References
- S. Bose, Dept. of Materials Engineering, Indian Institute of
Science (IISC), Bangalore Proved the Antibacterial Property of
Copper Coated Membrane, Available at: http://www.thehindu.com/sci-tech/science/iisc-copper-coated-membrane-makesdrinking-water-safe/article19524569.ece.
- J. Brame, Q. Li, P.J.J. Alvarez, Nanotechnology enabled water
treatment and reuse: emerging opportunities and challenges for
developing countries, Trends Food Sci. Technol., 22 (2017) 618–624.
- J.Y. Bottero, J. Rose, M.R. Wiesner, Nanotechnologies tools for
sustainability in a new wave of water treatment processes, Int.
Environ. Assess. Manage., 2 (2006) 391–395.
- J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric
and ceramic membrane structures: review of manufacturing
procedures and performance improvement for water treatment,
Environ. Pollut., 158 (2010) 2335–2349.
- M.S. Sodha, A. Kumar, G.N. Tiwari, G.C. Pandey, Effect of dye on
the performance of a solar still, Appl. Energy, 7 (1980)147–162.
- D.K. Dutt, Ashok Kumar, J.D. Anand, G.N. Tiwari, Performance
of a double-basin solar still in the presence of dye, Appl. Energy,
32 (1989) 207–223.
- A.N. Minasian, A.A. Al-karaghouli, An improved solar still: the
wick-basin type, Energy Convers. Manage., 36 (1995) 213–217.
- S.K. Shukla, V.P.S. Sorayan, Thermal modeling of solar stills: an
experimental validation. Renewable Energy, 30 (2005) 683–699.
- B. Janarthanan, J. Chandrasekaran, S. Kumar, Evaporative heat
loss and heat transfer for open- and closed-cycle systems of a
floating tilted wick solar still, Desalination, 180 (2005) 291–305.
- T. Rajaseenivasan, K. Kalidasa Murugavel, T. Elango,
Performance and exergy analysis of a double basin solar still
with different materials in the basin, Desal. Wat. Treat., 55
(2015) 1786–1794.
- A.E. Kabeel, Performance of solar still with a concave wick
evaporation surface, Energy, 34 (2009) 1504–1509.
- M. Sakthivel, S. Shanmugasundaram, T. Alwarsamy, An
experimental study on a regenerative solar still with energy
storage medium-jute cloth, Desalination, 264 (2010) 24–31.
- P. Srivastava, S.K. Agrawal, Experimental and theoretical
analysis of single sloped basin type solar still consisting
of multiple low thermal inertia floating porous absorbers,
Desalination, 311 (2013) 198–205.
- A.A. El-Sebaii, S.M. Shalaby, Parametric study and heat transfer
mechanisms of single basin v-corrugated solar still, Desal. Wat.
Treat., 55 (2015) 285–296.
- B. Janarthanan, J. Chandrasekaran, S. Kumar, Performance of
floating cum tilted-wick type solar still with the effect of water
flowing over the glass cover, Desalination, 190 (2006) 51–62.
- R. Samuel Hansen, C. Surya Narayanan, K. Kalidasa Murugavel,
Performance analysis on inclined solar still with different new
wick materials and wire mesh, Desalination, 358 (2015) 1–8.
- C.E. Okeke, S.U. Egarievwe, A.O.E. Animalu, Effects of coal and
charcoal on solar-still performance, Energy, 15 (1990) 1071–1073.
- A.O. Al-Sulttani, A. Ahsan, A.N. Hanoon, A. Rahman, S. Idrus,
Hourly yield prediction of a double-slope solar still hybrid
with rubber scrapers in low-latitude areas based on the particle
swarm optimization technique, Appl. Energy, 203 (2017)
280–303.
- K. Estahbanti, A. Ahsan, M. Feilizadeh, K. Jafarpur, S.-S.
Ashrafmansouri, M. Feilizade, Theoretical and experimental
investigation on internal reflectors in a single-slope solar still,
Appl. Energy, 165 (2016) 537–547.
- H. Tanaka, Solar thermal collector augmented by flat plate
booster reflector: optimum inclination of collector and reflector,
Appl. Energy, 88 (2011) 1395–1404.
- B.A.K. Abu-Hijleh, M. Hamzeh Rababa’h, Experimental study
of a solar still with sponge cubes in basin, Energy Convers.
Manage., 44 (2003) 1411–1418.
- T.V. Arjunan, H.Ş. Aybar, N. Nedunchezihan, Effect of sponge
liner on the internal heat transfer coefficients in a simple solar
still, Desal. Wat. Treat., 29 (2011) 271–284.
- R. Bhardwaj, M.V. ten Kortenaar, R.F. Mudde, Maximized
production of water by increasing area of condensation surface
for solar distillation, Appl. Energy, 154 (2015) 480–490.
- A.A. Madani, G.M. Zaki, Yield of solar stills with porous basins,
Appl. Energy, 52 (1995) 273–281.
- T. Arunkumar, K. Vinothkumar, A. Amimul, R. Jayaprakash, S.
Kumar, Experimental study on various solar still designs, ISRN
Renewable Energy, 2012 (2012), doi: 10.54/2012/569381.
- T. Arunkumar, R. Jayaprakash, A. Amimul, D.C. Denkenberger,
M.S. Okundamiya, Effect of water and air flow on concentric
tubular solar water desalting system, Appl. Energy, 103 (2013)
109–115.
- T. Arunkumar, R. Jayaprakash, A. Amimul, V.K. Kandasamy,
Effect of air flow on tubular solar still efficiency, J. Environ.
Health Sci. Eng., 10 (2013), doi: 10.1186/1735-2746-10-31.
- T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Sathyamurthy,
K.V. Kumar, A. Amimul, Productivity enhancements of
compound parabolic concentrator tubular solar stills,
Renewable Energy, 88 (2016) 391–400.
- T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Thyamurthy,
K.V. Kumar, K. Porkumaran, A. Amimul, Effect of heat removal
on tubular solar desalting system, Desalination, 379 (2016) 24–33.
- T. Arunkumar, A.E. Kabeel, Effect of phase change material on
concentric circular solar still: integration meets enhancement,
Desalination, 414 (2017) 46–50.
- T. Arunkumar, R. Velraj, A. Amimul, A.J.N. Khalifa, S. Shams,
D. Denkenberger, R. Sathyamurthy, Effect of parabolic solar
energy collectors for water distillation, Desal. Wat. Treat., 57
(2015) 21234–21242.
- T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Sathyamurthy,
Influence of crescent shaped absorber in water desalting system,
Desalination, 398 (2016) 208–213.
- J.M. Pearce, D.C. Denkenberger, Numerical Simulation of the
Direct Application of Compound Parabolic Concentrators
to a Single Effect Basin Solar Still, Proceedings of the 2006
International Conference of Solar Cooking and Food Processing,
vol. 118; 2006.
- T. Arunkumar, D.C. Denkenberger, A. Amimul, R. Jayaprakash,
The augmentation of distillate yield by using concentrator
coupled solar still with phase change material, Desalination,
314 (2013) 189–192.
- R. Nasrin, S. Parvin, M.A. Alim, Heat transfer by nanofluids
through a flat plate collector, Procedia Eng., 90 (2014) 364–370.
- Q. He, S. Zeng, S. Wang, Experimental investigation on the
efficiency of flat-plate collectors with nanofluids, Appl. Therm.
Eng., 88 (2015) 165–171.
- J. Albadr, S. Tayal, M. Alasadi, Heat transfer through heat
exchanger using Al2O3 nanofluid at different concentrations,
Case Stud. Therm. Eng., 1 (2013) 38–44.
- J. Subramani, P.K. Nagarajan, M. Omid, R. Sathyamurthy,
Efficiency and heat transfer improvements in a parabolic trough
collector using TiO2 nanofluids under turbulent flow regime,
Renewable Energy, 119 (2017) 19–31.
- A.E. Kabeel, M.S. El-Said Emad, Applicability of flashing
desalination technique for small scale needs using a novel
integrated system coupled with nanofluid-based solar collector,
Desalination, 333 (2014) 10–22.
- A. Bhattad, J. Sarkar, P. Ghosh, Improving the performance of
refrigeration systems by nanofluids: a comprehensive review,
Renewable Sustainable Energy Rev., 82 (2018) 3656–3669.
- N.A.C. Sidek, M.N.A.W.M. Yazid, R. Mamat, Recent
advancement of nanofluids in engine cooling systems,
Renewable Sustainable Energy Rev., 75 (2017) 137–144.
- A.A. Hawwash, Ali.K. Abdel Rahman, S.A. Nada, S. Ookawara,
Numerical investigation and experimental verification
of performance enhancement of flat plate collector using
nanofluids, Appl. Therm. Eng., 130 (2018) 363–374.
- S.Y. Ebaid Munzer, A.M. Ghrair, M. Al Busoul, Experimental
investigation of cooling photovoltaic (PV) panels using (TiO2)
nanofluid in water-polyethylene glycol mixture and (Al2O3)
nanofluid in water-cetyltrimethylemmonium bromide mixture,
Energy Convers. Manage., 155 (2018) 324–343.
- R. Senthilkumar, S. Prabhu, M. Cheralathan, Experimental
investigation on carbon nano tubes coated brass rectangular
extended surfaces, Appl. Therm. Eng., 50 (2013) 1361–1368.
- R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, P. Keblinski,
Effect of aggregation on thermal conduction in colloidal
nanofluids, Appl. Phys. Lett., 89 (2006)143119–3.
- H. Masuda, A. Ebata, K. Teramac, N. Hishinuma, Alteration
of thermal conductivity and viscosity of liquid by dispersing
ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultrafine
particles), Netsu Bussei, 4 (1993) 227–233.
- K.H. Nayi, K.V. Modi, Pyramid solar still: a comprehensive
review, Renewable Sustainable Energy Rev., 81 (2018) 136–148.
- R. Sathyamurthy, S.A. El-Agouz, P.K. Nagarajan, J. Subramani,
T. Arunkumar, D. Mageshbabu, B. Madhu, K. Bharathwaaj, N.
Prakash, A review of integrating solar collectors to solar still,
Renewable Sustainable Energy Rev., 77 (2017) 1069–1097.
- Z.M. Omara, A.S. Abdullah, A.E. Kabeel, F.A. Essa, The cooling
techniques of the solar stills’ glass covers - a review, Renewable
Sustainable Energy Rev., 78 (2017) 176–193.
- A.E. Kabeel, T. Arunkumar, D.C. Denkenberger, R.
Sathyamurthy, Performance enhancement of solar still through
efficient heat exchange mechanism – a review, Appl. Therm.
Eng., 114 (2017) 815–836.
- J. Koo, C. Kleinstreuer, A new thermal conductivity model for
nanofluids, J. Nanopart. Res., 6 (2004) 577–588.
- M. Corcione, Heat transfer features of buoyancy-driven
nanofluids inside rectangular enclosures differentially heated
at the sidewalls, Int. J. Therm. Sci., 49 (2010) 1536–1546.
- B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of
dispersed fluids with submicron metallic oxide particles, Exp.
Heat Transfer J., 11 (1998) 151–170.
- D. Milanova, R. Kumar, Role of ions in the pool building heat
transfer of pure and silica nanofluids, App. Phys. Lett., 87 (2005)
233107-3.
- M. Chandrasekar, S. Suresh, A review on the mechanisms
of heat transport in nanofluids, Heat Transfer Eng., 30 (2009)
1136–1150.
- J.H. Lee, S.H. Lee, C.J. Choi, S.P. Jang, S.U.S. Choi, A review
of thermal conductivity data, mechanisms and models for
nanofluids, Int. J. Micro-Nano Scale Transp., 1 (2010) 269–322.
- W. Yu, H. Xie, A review on nanofluids: preparation, stability
mechanisms, and applications, J. Nanomater. 2012 (2012)
1–17.
- L. Sahota, G.N. Tiwari, Effect of Al2O3 nanoparticles on the
performance of passive double slope solar still, Sol. Energy, 130
(2016) 260–272.
- L. Sahota, G.N. Tiwari, Effect of nanofluids on the performance
of passive double slope solar still: a comparative study using
characteristic curve, Desalination, 388 (2016) 9–21.
- L. Sahota, G.N. Tiwari, Exergoeconomic and enviroeconomic
analysis of hybrid double slope solar still loaded with
nanofluids, Energy Convers. Manage., 148 (2017) 413–430.
- L. Sahota, Shyam, G.N. Tiwari, Energy matrices, enviroeconomic
and exergoeconomic analysis of passive double slope solar still
with water based nanofluids, Desalination,409 (2017) 66–79.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, Numerical investigation of
modified solar still using nanofluids and external condenser, J.
Taiwan Inst. Chem. Eng., 75 (2017) 77–86.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, Enhancement of modified
solar still integrated with external condenser using nanofluids:
an experimental approach, Energy Convers. Manage., 78 (2014)
493–498.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, Improving the performance
of solar still by using nanofluids and providing vacuum, Energy
Convers. Manage., 86 (2014) 268–274.
- Z.M. Omara, A.E. Kabeel, F.A. Essa, Effect of using nanofluids
and providing vacuum on the yield of corrugated wick solar
still, Energy Convers. Manage., 103 (2015) 965–972.
- O. Mahian, A. Kianifar, S.Z. Heris, D. Wen, A.Z. Sahin, S.
Wongwises, Nanofluids effects on the evaporation rate in a
solar still equipped with a heat exchanger, Nano Energy, 36
(2017) 134–155.
- T. Elango, A. Kannan, K. Kalidasa Murugavel, Performance
studies on single basin single slope solar still with different
water nanofluids, Desalination, 360 (2015) 45–51.
- B. Madhu, E. Balasubramanian, P.K. Nagarajan, R.
Sathyamurthy, Mageshbabu, Improving the yield of fresh water
and exergy analysis of conventional solar still with different
nanofluids, FME Trans., 45 (2017) 524–530.
- S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, B. Gadgil,
Influence of solvent in the synthesis of nano-structured ZnO
by hydrothermal method and their application in solar still, J.
Environ. Chem. Eng., 5 (2017) 1219–1226.
- B. Gupta, P. Shankar, R. Sharma, P.T. Baredar, Performance
enhancement using nano particles in the modified passive solar
still, Procedia Technol., 25 (2016) 1209–1216.
- B. Gupta, A. Kumar, P.V. Baredar, Experimental investigation
on modified solar still using nanoparticles and water
sprinkler attachment. Front. Mater., 4 (2017) 1–7, doi: 10.3389/
fmats.2017.00023.
- A.K.R. Singh, H.K. Singh, Performance evaluation of solar still
with and without nanofluid, Int. J. Sci. Eng. Technol., 3 (2015)
1093–1101.
- D.D.W. Rufuss, L. Suganthi, S. Iniyan, P.A. Davies, Effects of
nanoparticle-enhanced phase change material (NPCM) on solar
still productivity, J. Cleaner Prod., 192 (2018) 9–29.
- V.J. Navale, S.R. Kumbhar, V.K. Bhojawani, Experimental study
of masonic solar still by using nanofluid, Int. Eng. Res. J., 1
(2016) 984–987.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah,
T. Arunkumar, R. Sathyamurthy, Augmentation of a solar
still distillate yield via black absorber plate coated with
black nanoparticles, Alexandria Eng. J., 56 (2017) 433–438.
- M.K. Sain, G. Kumawat, Performance enhancement of single
slope solar still using nano-particles mixed with black paint,
Adv. Nanosci. Technol., 1 (2015) 55–65.
- S.W. Sharshir, G. Peng, L. Wu, N. Yang, F.A. Essa, A.H. Elsheikh,
I.T. Showgi Mohamed, A.E. Kabeel, Enhancing the solar
still performance using nanofluids and glass cover cooling:
experimental study, Appl. Therm. Eng., 113 (2017) 684–693.
- W. Chen, C. Zou, X. Li, L. Li, Experimental investigation of
SiC nanofluids for solar distillation system: stability, optical
properties and thermal conductivity with saline water-based
fluid, Int. J. Heat Mass Transfer, 107 (2017) 264–270.
- M. Koilraj Gnanadason, P. Senthil Kumar, G. Jemilda, S. Sherin
Jasper, Effect of nanofluids in a modified vacuum single basin
solar still, Int. J. Sci. Eng. Res., 3 (2012) 1–7.
- M.K. Gnanadason, P. Senthil Kumar, V.H. Wilson, G. Hariharan,
N.S. Vinayagamoorthy, Design and performance analysis of an
innovative single basin solar nanostill, Smart Grid Renewable
Energy, 4 (2013) 88–98.
- N. Abdelal, Y. Taamneh, Enhancement of pyramid solar still
productivity using absorber plate made of carbon fiber/CNTmodified
epoxy composites, Desalination, 419 (2017) 117–124.
- A. Elfasakhany, Performance assessment and productivity of a
simple type solar still integrated with nanocomposite energy
storage, Appl. Energy, 183 (2016) 399–407.
- W. Chen, C. Zou, L.I. Xiaoke, H. Liang, Application of
recoverable carbon nanotube nanofluids in solar desalination
system: an experimental investigation, Desalination (in press),
doi: 10.1016/j.desal.2017.09.025.
- V.K. Methre, M. Easwaramoorthy, Exergy analysis of the solar
still integrated nanocomposite phase change materials, Appl.
Solar Energy, 5 (2015) 99–106.
- M.T. Chaichan, H.A. Kazem, Using aluminium powder with
PCM (paraffin wax) to enhance single slope solar still water
distiller productivity in Baghdad-Iraq winter weathers, Int. J.
Renewable Energy Res., 5 (2015) 251–257.
- G. Rajasekar, Easwaramoorthy, Performance evaluation on solar
still integrated with nano-particle-composite phase change
materials, Appl. Solar Energy, 51 (2015) 15–21.
- P. Bhattacherya, S.K. Saha, A. Yadav, P.E. Phelan, R.S. Prasher,
Brownian dynamics simulation to determine the effective
thermal conductivity of nanofluids, J. Appl. Phys., 95 (2004)
6492–6494.
- A. Gupta, R. Kumar, Role of Brownian motion on the thermal
conductivity enhancement of nanofluids, Appl. Phys. Lett., 9
(2007) 223102–3.
- P. Keblinski, S.R. Phiipot, S.U.S. Choi, J.A. Eastman, Mechanisms
of heat flow in suspensions of nano-sized particles (nanofluids),
Int. J. Heat Mass Transfer, 45 (2002) 855–863.