References

  1. S. Bose, Dept. of Materials Engineering, Indian Institute of Science (IISC), Bangalore Proved the Antibacterial Property of Copper Coated Membrane, Available at: http://www.thehindu.com/sci-tech/science/iisc-copper-coated-membrane-makesdrinking-water-safe/article19524569.ece.
  2. J. Brame, Q. Li, P.J.J. Alvarez, Nanotechnology enabled water treatment and reuse: emerging opportunities and challenges for developing countries, Trends Food Sci. Technol., 22 (2017) 618–624.
  3. J.Y. Bottero, J. Rose, M.R. Wiesner, Nanotechnologies tools for sustainability in a new wave of water treatment processes, Int. Environ. Assess. Manage., 2 (2006) 391–395.
  4. J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment, Environ. Pollut., 158 (2010) 2335–2349.
  5. M.S. Sodha, A. Kumar, G.N. Tiwari, G.C. Pandey, Effect of dye on the performance of a solar still, Appl. Energy, 7 (1980)147–162.
  6. D.K. Dutt, Ashok Kumar, J.D. Anand, G.N. Tiwari, Performance of a double-basin solar still in the presence of dye, Appl. Energy, 32 (1989) 207–223.
  7. A.N. Minasian, A.A. Al-karaghouli, An improved solar still: the wick-basin type, Energy Convers. Manage., 36 (1995) 213–217.
  8. S.K. Shukla, V.P.S. Sorayan, Thermal modeling of solar stills: an experimental validation. Renewable Energy, 30 (2005) 683–699.
  9. B. Janarthanan, J. Chandrasekaran, S. Kumar, Evaporative heat loss and heat transfer for open- and closed-cycle systems of a floating tilted wick solar still, Desalination, 180 (2005) 291–305.
  10. T. Rajaseenivasan, K. Kalidasa Murugavel, T. Elango, Performance and exergy analysis of a double basin solar still with different materials in the basin, Desal. Wat. Treat., 55 (2015) 1786–1794.
  11. A.E. Kabeel, Performance of solar still with a concave wick evaporation surface, Energy, 34 (2009) 1504–1509.
  12. M. Sakthivel, S. Shanmugasundaram, T. Alwarsamy, An experimental study on a regenerative solar still with energy storage medium-jute cloth, Desalination, 264 (2010) 24–31.
  13. P. Srivastava, S.K. Agrawal, Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers, Desalination, 311 (2013) 198–205.
  14. A.A. El-Sebaii, S.M. Shalaby, Parametric study and heat transfer mechanisms of single basin v-corrugated solar still, Desal. Wat. Treat., 55 (2015) 285–296.
  15. B. Janarthanan, J. Chandrasekaran, S. Kumar, Performance of floating cum tilted-wick type solar still with the effect of water flowing over the glass cover, Desalination, 190 (2006) 51–62.
  16. R. Samuel Hansen, C. Surya Narayanan, K. Kalidasa Murugavel, Performance analysis on inclined solar still with different new wick materials and wire mesh, Desalination, 358 (2015) 1–8.
  17. C.E. Okeke, S.U. Egarievwe, A.O.E. Animalu, Effects of coal and charcoal on solar-still performance, Energy, 15 (1990) 1071–1073.
  18. A.O. Al-Sulttani, A. Ahsan, A.N. Hanoon, A. Rahman, S. Idrus, Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique, Appl. Energy, 203 (2017) 280–303.
  19. K. Estahbanti, A. Ahsan, M. Feilizadeh, K. Jafarpur, S.-S. Ashrafmansouri, M. Feilizade, Theoretical and experimental investigation on internal reflectors in a single-slope solar still, Appl. Energy, 165 (2016) 537–547.
  20. H. Tanaka, Solar thermal collector augmented by flat plate booster reflector: optimum inclination of collector and reflector, Appl. Energy, 88 (2011) 1395–1404.
  21. B.A.K. Abu-Hijleh, M. Hamzeh Rababa’h, Experimental study of a solar still with sponge cubes in basin, Energy Convers. Manage., 44 (2003) 1411–1418.
  22. T.V. Arjunan, H.Ş. Aybar, N. Nedunchezihan, Effect of sponge liner on the internal heat transfer coefficients in a simple solar still, Desal. Wat. Treat., 29 (2011) 271–284.
  23. R. Bhardwaj, M.V. ten Kortenaar, R.F. Mudde, Maximized production of water by increasing area of condensation surface for solar distillation, Appl. Energy, 154 (2015) 480–490.
  24. A.A. Madani, G.M. Zaki, Yield of solar stills with porous basins, Appl. Energy, 52 (1995) 273–281.
  25. T. Arunkumar, K. Vinothkumar, A. Amimul, R. Jayaprakash, S. Kumar, Experimental study on various solar still designs, ISRN Renewable Energy, 2012 (2012), doi: 10.54/2012/569381.
  26. T. Arunkumar, R. Jayaprakash, A. Amimul, D.C. Denkenberger, M.S. Okundamiya, Effect of water and air flow on concentric tubular solar water desalting system, Appl. Energy, 103 (2013) 109–115.
  27. T. Arunkumar, R. Jayaprakash, A. Amimul, V.K. Kandasamy, Effect of air flow on tubular solar still efficiency, J. Environ. Health Sci. Eng., 10 (2013), doi: 10.1186/1735-2746-10-31.
  28. T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Sathyamurthy, K.V. Kumar, A. Amimul, Productivity enhancements of compound parabolic concentrator tubular solar stills, Renewable Energy, 88 (2016) 391–400.
  29. T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Thyamurthy, K.V. Kumar, K. Porkumaran, A. Amimul, Effect of heat removal on tubular solar desalting system, Desalination, 379 (2016) 24–33.
  30. T. Arunkumar, A.E. Kabeel, Effect of phase change material on concentric circular solar still: integration meets enhancement, Desalination, 414 (2017) 46–50.
  31. T. Arunkumar, R. Velraj, A. Amimul, A.J.N. Khalifa, S. Shams, D. Denkenberger, R. Sathyamurthy, Effect of parabolic solar energy collectors for water distillation, Desal. Wat. Treat., 57 (2015) 21234–21242.
  32. T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Sathyamurthy, Influence of crescent shaped absorber in water desalting system, Desalination, 398 (2016) 208–213.
  33. J.M. Pearce, D.C. Denkenberger, Numerical Simulation of the Direct Application of Compound Parabolic Concentrators to a Single Effect Basin Solar Still, Proceedings of the 2006 International Conference of Solar Cooking and Food Processing, vol. 118; 2006.
  34. T. Arunkumar, D.C. Denkenberger, A. Amimul, R. Jayaprakash, The augmentation of distillate yield by using concentrator coupled solar still with phase change material, Desalination, 314 (2013) 189–192.
  35. R. Nasrin, S. Parvin, M.A. Alim, Heat transfer by nanofluids through a flat plate collector, Procedia Eng., 90 (2014) 364–370.
  36. Q. He, S. Zeng, S. Wang, Experimental investigation on the efficiency of flat-plate collectors with nanofluids, Appl. Therm. Eng., 88 (2015) 165–171.
  37. J. Albadr, S. Tayal, M. Alasadi, Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Stud. Therm. Eng., 1 (2013) 38–44.
  38. J. Subramani, P.K. Nagarajan, M. Omid, R. Sathyamurthy, Efficiency and heat transfer improvements in a parabolic trough collector using TiO2 nanofluids under turbulent flow regime, Renewable Energy, 119 (2017) 19–31.
  39. A.E. Kabeel, M.S. El-Said Emad, Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector, Desalination, 333 (2014) 10–22.
  40. A. Bhattad, J. Sarkar, P. Ghosh, Improving the performance of refrigeration systems by nanofluids: a comprehensive review, Renewable Sustainable Energy Rev., 82 (2018) 3656–3669.
  41. N.A.C. Sidek, M.N.A.W.M. Yazid, R. Mamat, Recent advancement of nanofluids in engine cooling systems, Renewable Sustainable Energy Rev., 75 (2017) 137–144.
  42. A.A. Hawwash, Ali.K. Abdel Rahman, S.A. Nada, S. Ookawara, Numerical investigation and experimental verification of performance enhancement of flat plate collector using nanofluids, Appl. Therm. Eng., 130 (2018) 363–374.
  43. S.Y. Ebaid Munzer, A.M. Ghrair, M. Al Busoul, Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water-polyethylene glycol mixture and (Al2O3) nanofluid in water-cetyltrimethylemmonium bromide mixture, Energy Convers. Manage., 155 (2018) 324–343.
  44. R. Senthilkumar, S. Prabhu, M. Cheralathan, Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces, Appl. Therm. Eng., 50 (2013) 1361–1368.
  45. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, P. Keblinski, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett., 89 (2006)143119–3.
  46. H. Masuda, A. Ebata, K. Teramac, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultrafine particles), Netsu Bussei, 4 (1993) 227–233.
  47. K.H. Nayi, K.V. Modi, Pyramid solar still: a comprehensive review, Renewable Sustainable Energy Rev., 81 (2018) 136–148.
  48. R. Sathyamurthy, S.A. El-Agouz, P.K. Nagarajan, J. Subramani, T. Arunkumar, D. Mageshbabu, B. Madhu, K. Bharathwaaj, N. Prakash, A review of integrating solar collectors to solar still, Renewable Sustainable Energy Rev., 77 (2017) 1069–1097.
  49. Z.M. Omara, A.S. Abdullah, A.E. Kabeel, F.A. Essa, The cooling techniques of the solar stills’ glass covers - a review, Renewable Sustainable Energy Rev., 78 (2017) 176–193.
  50. A.E. Kabeel, T. Arunkumar, D.C. Denkenberger, R. Sathyamurthy, Performance enhancement of solar still through efficient heat exchange mechanism – a review, Appl. Therm. Eng., 114 (2017) 815–836.
  51. J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanopart. Res., 6 (2004) 577–588.
  52. M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, Int. J. Therm. Sci., 49 (2010) 1536–1546.
  53. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer J., 11 (1998) 151–170.
  54. D. Milanova, R. Kumar, Role of ions in the pool building heat transfer of pure and silica nanofluids, App. Phys. Lett., 87 (2005) 233107-3.
  55. M. Chandrasekar, S. Suresh, A review on the mechanisms of heat transport in nanofluids, Heat Transfer Eng., 30 (2009) 1136–1150.
  56. J.H. Lee, S.H. Lee, C.J. Choi, S.P. Jang, S.U.S. Choi, A review of thermal conductivity data, mechanisms and models for nanofluids, Int. J. Micro-Nano Scale Transp., 1 (2010) 269–322.
  57. W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications, J. Nanomater. 2012 (2012) 1–17.
  58. L. Sahota, G.N. Tiwari, Effect of Al2O3 nanoparticles on the performance of passive double slope solar still, Sol. Energy, 130 (2016) 260–272.
  59. L. Sahota, G.N. Tiwari, Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve, Desalination, 388 (2016) 9–21.
  60. L. Sahota, G.N. Tiwari, Exergoeconomic and enviroeconomic analysis of hybrid double slope solar still loaded with nanofluids, Energy Convers. Manage., 148 (2017) 413–430.
  61. L. Sahota, Shyam, G.N. Tiwari, Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids, Desalination,409 (2017) 66–79.
  62. A.E. Kabeel, Z.M. Omara, F.A. Essa, Numerical investigation of modified solar still using nanofluids and external condenser, J. Taiwan Inst. Chem. Eng., 75 (2017) 77–86.
  63. A.E. Kabeel, Z.M. Omara, F.A. Essa, Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach, Energy Convers. Manage., 78 (2014) 493–498.
  64. A.E. Kabeel, Z.M. Omara, F.A. Essa, Improving the performance of solar still by using nanofluids and providing vacuum, Energy Convers. Manage., 86 (2014) 268–274.
  65. Z.M. Omara, A.E. Kabeel, F.A. Essa, Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still, Energy Convers. Manage., 103 (2015) 965–972.
  66. O. Mahian, A. Kianifar, S.Z. Heris, D. Wen, A.Z. Sahin, S. Wongwises, Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger, Nano Energy, 36 (2017) 134–155.
  67. T. Elango, A. Kannan, K. Kalidasa Murugavel, Performance studies on single basin single slope solar still with different water nanofluids, Desalination, 360 (2015) 45–51.
  68. B. Madhu, E. Balasubramanian, P.K. Nagarajan, R. Sathyamurthy, Mageshbabu, Improving the yield of fresh water and exergy analysis of conventional solar still with different nanofluids, FME Trans., 45 (2017) 524–530.
  69. S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, B. Gadgil, Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar still, J. Environ. Chem. Eng., 5 (2017) 1219–1226.
  70. B. Gupta, P. Shankar, R. Sharma, P.T. Baredar, Performance enhancement using nano particles in the modified passive solar still, Procedia Technol., 25 (2016) 1209–1216.
  71. B. Gupta, A. Kumar, P.V. Baredar, Experimental investigation on modified solar still using nanoparticles and water sprinkler attachment. Front. Mater., 4 (2017) 1–7, doi: 10.3389/ fmats.2017.00023.
  72. A.K.R. Singh, H.K. Singh, Performance evaluation of solar still with and without nanofluid, Int. J. Sci. Eng. Technol., 3 (2015) 1093–1101.
  73. D.D.W. Rufuss, L. Suganthi, S. Iniyan, P.A. Davies, Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity, J. Cleaner Prod., 192 (2018) 9–29.
  74. V.J. Navale, S.R. Kumbhar, V.K. Bhojawani, Experimental study of masonic solar still by using nanofluid, Int. Eng. Res. J., 1 (2016) 984–987.
  75. A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah, T. Arunkumar, R. Sathyamurthy, Augmentation of a solar still distillate yield via black absorber plate coated with black nanoparticles, Alexandria Eng. J., 56 (2017) 433–438.
  76. M.K. Sain, G. Kumawat, Performance enhancement of single slope solar still using nano-particles mixed with black paint, Adv. Nanosci. Technol., 1 (2015) 55–65.
  77. S.W. Sharshir, G. Peng, L. Wu, N. Yang, F.A. Essa, A.H. Elsheikh, I.T. Showgi Mohamed, A.E. Kabeel, Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study, Appl. Therm. Eng., 113 (2017) 684–693.
  78. W. Chen, C. Zou, X. Li, L. Li, Experimental investigation of SiC nanofluids for solar distillation system: stability, optical properties and thermal conductivity with saline water-based fluid, Int. J. Heat Mass Transfer, 107 (2017) 264–270.
  79. M. Koilraj Gnanadason, P. Senthil Kumar, G. Jemilda, S. Sherin Jasper, Effect of nanofluids in a modified vacuum single basin solar still, Int. J. Sci. Eng. Res., 3 (2012) 1–7.
  80. M.K. Gnanadason, P. Senthil Kumar, V.H. Wilson, G. Hariharan, N.S. Vinayagamoorthy, Design and performance analysis of an innovative single basin solar nanostill, Smart Grid Renewable Energy, 4 (2013) 88–98.
  81. N. Abdelal, Y. Taamneh, Enhancement of pyramid solar still productivity using absorber plate made of carbon fiber/CNTmodified epoxy composites, Desalination, 419 (2017) 117–124.
  82. A. Elfasakhany, Performance assessment and productivity of a simple type solar still integrated with nanocomposite energy storage, Appl. Energy, 183 (2016) 399–407.
  83. W. Chen, C. Zou, L.I. Xiaoke, H. Liang, Application of recoverable carbon nanotube nanofluids in solar desalination system: an experimental investigation, Desalination (in press), doi: 10.1016/j.desal.2017.09.025.
  84. V.K. Methre, M. Easwaramoorthy, Exergy analysis of the solar still integrated nanocomposite phase change materials, Appl. Solar Energy, 5 (2015) 99–106.
  85. M.T. Chaichan, H.A. Kazem, Using aluminium powder with PCM (paraffin wax) to enhance single slope solar still water distiller productivity in Baghdad-Iraq winter weathers, Int. J. Renewable Energy Res., 5 (2015) 251–257.
  86. G. Rajasekar, Easwaramoorthy, Performance evaluation on solar still integrated with nano-particle-composite phase change materials, Appl. Solar Energy, 51 (2015) 15–21.
  87. P. Bhattacherya, S.K. Saha, A. Yadav, P.E. Phelan, R.S. Prasher, Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids, J. Appl. Phys., 95 (2004) 6492–6494.
  88. A. Gupta, R. Kumar, Role of Brownian motion on the thermal conductivity enhancement of nanofluids, Appl. Phys. Lett., 9 (2007) 223102–3.
  89. P. Keblinski, S.R. Phiipot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45 (2002) 855–863.