References
- B. Noroozi, G.A. Sorial, Applicable models for multi-component
adsorption of dyes: a review, J. Environ. Sci., 25 (2013) 419–429.
- K. Slater, Environmental Impact of Textiles: Production,
Processes and Protection, 1st ed., Cambridge, Woodhead, 2003.
- K. Hunger, Industrial Dyes, Weinheim, FRG, Wiley-VCH Verlag
GmbH & Co. KGaA, 2002.
- H.S. Jabeen, S. Ur Rahman, S. Mahmood, S. Anwer, Genotoxicity
assessment of amaranth and allura red using saccharomyces
cerevisiae, Bull. Environ. Contam. Toxicol., 90 (2013) 22–26.
- M. Honma, Evaluation of the in vivo genotoxicity of Allura Red
AC (Food Red No. 40), Food Chem. Toxicol., 84 (2015) 270–275.
- D. Wambuguh, R.R. Chianelli, Indigo dye waste recovery from
blue denim textile effluent: a by-product synergy approach,
New J. Chem., 32 (2008) 2189–2194.
- N. Meksi, M. Ben Ticha, M. Kechida, M.F. Mhenni, Using of
ecofriendly α-hydroxycarbonyls as reducing agents to replace
sodium dithionite in indigo dyeing processes, J. Clean. Prod.,
24 (2012) 149–158.
- D.I. Bernstein, Occupational asthma caused by exposure to
low-molecular-weight chemicals, Immunol. Allergy Clin. North
Am., 23 (2003) 221–234.
- N. Inomata, H. Osuna, H. Fujita, T. Ogawa, Z. Ikezawa, Multiple
chemical sensitivities following intolerance to azo dye in sweets
in a 5-year-old girl, Allergol. Int., 55 (2006) 203–205.
- D. McCann, A. Barrett, A. Cooper, D. Crumpler, L. Dalen,
K. Grimshaw, E. Kitchin, K. Lok, L. Porteous, E. Prince,
E. Sonuga-Barke, J. Warner, J. Stevenson, Food additives and
hyperactive behaviour in 3-year-old and 8/9-year-old children
in the community: a randomised, double-blinded, placebo
controlled trial, Lancet, 370 (2007) 1560–1567.
- C. O’Neill, F.R. Hawkes, D.L. Hawkes, N.D. Lourenc, Colour
in textile effluents – sources, measurement, discharge consents
and simulation : a review, J. Chem. Technol. Biotechnol., 74
(1999) 1009–1018.
- P. Song, D.Y. Zhang, X.H. Yao, F. Feng, G.H. Wu, Preparation of
a regenerated silk fibroin film and its adsorbability to azo dyes,
Int. J. Biol. Macromol., 102 (2017) 1066–1072.
- M. Sousa, C. Miguel, I. Rodrigues, A. Parola, F. Pina, J. Seixas de
Melo, M. Melo, A photochemical study on the blue dye indigo:
from solution to ancient Andean textiles, Photochem. Photobiol.
Sci., 7 (2008) 1353–1359.
- X.-H. Zhang, The study on flocculation treating wastewater
from domestic animals and poultry breeding, IERI Procedia,
9 (2014) 2–7.
- A.-A. Peláez-Cid, A.-M. Herrera-González, M. Salazar-Villanueva, A. Bautista-Hernández, Elimination of textile dyes
using activated carbons prepared from vegetable residues and
their characterization, J. Environ. Manage., 181 (2016) 269–278.
- M. Goswami, P. Phukan, Enhanced adsorption of cationic
dyes using sulfonic acid modified activated carbon, J. Environ.
Chem. Eng., 5 (2017) 3508–3517.
- K.-W.Jung, B.H. Choi, M.-J. Hwang, J.-W.Choi, S.-H. Lee, J.-S.
Chang, K.H. Ahn, Adsorptive removal of anionic azo dye from
aqueous solution using activated carbon derived from extracted
coffee residues, J. Clean. Prod., 166 (2017) 360–368.
- D.A. Giannakoudakis, G.Z. Kyzas, A. Avranas, N.K. Lazaridis,
Multi-parametric adsorption effects of the reactive dye removal
with commercial activated carbons, J. Mol. Liq., 213 (2016)
381–389.
- A. Echavarria, A., Hormaza, Flower wastes as a low-cost
adsorbent for the removal of acid blue 9, DYNA, 81 (2014)
132–138.
- M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris,
Cationic and anionic dye adsorption by agricultural solid wastes:
a comprehensive review, Desalination, 280 (2011) 1–13.
- G. Crini, Non-conventional low-cost adsorbents for dye removal:
a review, Bioresour. Technol., 97 (2006) 1061–1085.
- B. Jena, B.P. Das, A. Khandual, S. Sahu, L. Behera, Ecofriendly
processing of textiles, Mater. Today Proc., 2 (2015) 1776–1791.
- V.K. Gupta, Suhas, Application of low-cost adsorbents for dye
removal - A review, J. Environ. Manage., 90 (2009) 2313–2342.
- M. Turabik, Adsorption of basic dyes from single and binary
component systems onto bentonite: simultaneous analysis of
Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric
analysis method, J. Hazard. Mater., 158 (2008) 52–64.
- Y. Villada, A. Hormaza, Simultaneous analysis of the removal
of brilliant blue and red 40 through spectrophotometric
derivative, Ing. y Desarro., 33 (2015) 38–58.
- P. Peralta-Zamora, A. Kunz, N. Nagata, R.J. Poppi, Spectrophotometric
determination of organic dye mixtures by using
multivariate calibration, Talanta, 47 (1998) 77–84.
- A. Asfaram, M. Ghaedi, G.R. Ghezelbash, F. Pepe, Application
of experimental design and derivative spectrophotometry
methods in optimization and analysis of biosorption of binary
mixtures of basic dyes from aqueous solutions, Ecotoxicol.
Environ. Saf., 139 (2017) 219–227.
- J.D. Martínez, T. Pineda, J.P. López, M. Betancur, Assessment of
the rice husk lean-combustion in a bubbling fluidized bed for
the production of amorphous silica-rich ash, Energy, 36 (2011)
3846–3854.
- Dane, Censo Nacional Agropecuario Décima Entrega Resultados -
2014, Bol. Dane, Government of Colombia, Bogota, 1–43, 2015.
- P.C.C. Faria, J.J.M. Orfão, M.F.R. Pereira, Adsorption of anionic
and cationic dyes on activated carbons with different surface
chemistries, Water Res., 38 (2004) 2043–2052.
- A.A.B.-P. Hernández-Montoya, M.A. Pérez-Cruz, D.I. Mendoza-Castillo, M.R. Moreno-Virgen, Competitive adsorption of dyes
and heavy metals on zeolitic structures, J. Environ. Manage.,
116 (2013) 213–221.
- J. Weber, Control de la calidad del agua; Procesos fisicoquímicos,
Editor. Reverté, John Wiley & Sons, New York, 1979, p. 654.
- K.S. Baig, H.D. Doan, J. Wu, Multicomponent isotherms for
biosorption of Ni2+ and Zn2+, Desalination, 249 (2009) 429–439.
- S. Ziane, F. Bessaha, K. Marouf-Khelifa, A. Khelifa, Single
and binary adsorption of reactive black 5 and Congo red on
modified dolomite: performance and mechanism, J. Mol. Liq.,
249 (2018) 1245–1253.
- S.K. Papageorgiou, F.K. Katsaros, E.P. Kouvelos,
N.K. Kanellopoulos,
Prediction of binary adsorption isotherms
of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from
single adsorption data, J. Hazard. Mater., 162 (2009) 1347–54.
- S. Wang, C.W. Ng, W. Wang, Q. Li, L. Li, A comparative study
on the adsorption of acid and reactive dyes on multiwall carbon
nanotubes in single and binary dye systems, J. Chem. Eng. Data,
57 (2012) 1563–1569.
- N.M. Mahmoodi, U. Sadeghi, A. Maleki, B. Hayati, F. Najafi,
Synthesis of cationic polymeric adsorbent and dye removal
isotherm, kinetic and thermodynamic, J. Ind. Eng. Chem., 20
(2014) 2745–2753.
- Y.-S. Ho, Review of second-order models for adsorption
systems, J. Hazard. Mater., 136 (2006) 681–689.
- A.F. Halbus, Z.H. Athab, F.H. Hussein, Adsorption of disperse
blue dye on iraqi date palm seeds activated carbon, Int. J. Chem.
Sci., 11 (2013) 1219–1233.
- G. Montgomery, D. Runger, Applied Statistics and
Probability for Engineers, 6th ed. New York, NY, John Wiley
& Sons, 2013.
- A.R. Cestari, E.F.S. Vieira, A.M.G. Tavares, R.E. Bruns, The
removal of the indigo carmine dye from aqueous solutions
using cross-linked chitosan: evaluation of adsorption thermodynamics
using a full factorial design, J. Hazard. Mater., 153
(2008) 566–574.
- D. Bingol, N. Tekin, M. Alkan, Brilliant Yellow dye adsorption
onto sepiolite using a full factorial design, Appl. Clay Sci., 50
(2010) 315–321.
- O. Abdelwahab, A. El Nemr, A. El-Sikaily, A. Khaled, Use of
rice husk for adsorption of direct dyes from aqueous solution:
a case study of direct F. Scarlett, Egypt. J. Aquat. Res., 31 (2005)
1–11.
- B. Volesky, Sorption and Biosorption, BV Sorbex, Inc., Montreal,
2003.
- Z. Aksu, D. Akpinar, Competitive biosorption of phenol and
chromium(VI) from binary mixtures onto dried anaerobic
activated sludge, Biochem. Eng. J., 7 (2001) 183–193.
- W. Alencar, E. Acayanka, E. Lima, B. Royer, F. de Souza,
J. Lameira, C. Alvesa, Application of Mangifera indica (mango)
seeds as a biosorbent for removal of Victazol Orange 3R dye
from aqueous solution and study of the biosorption mechanism,
Chem. Eng. J., 209 (2012) 577–588.
- Z. Aksu, U. Açikel, E. Kabasakal, S. Tezer, Equilibrium modelling
of individual and simultaneous biosorption of chromium(VI)
and nickel(II) onto dried activated sludge., Water Res., 36 (2002)
3063–3073.
- S. Azizian, Kinetic models of sorption: a theoretical analysis,
J. Colloid Interface Sci., 276 (2004) 47–52.
- S. Serrano, F. Garrido, C.G. Campbell, M.T. Garcı́a-González,
Competitive sorption of cadmium and lead in acid soils of
Central Spain, Geoderma, 124 (2005) 91–104.
- H. Liu, C. Wang, J. Liu, B. Wang, H. Sun, Competitive adsorption
of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic
systems using tourmaline, J. Environ. Manage., 128 (2013)
727–734.