References

  1. Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven membrane processes: a review, J. Membr. Sci., 499 (2016) 201–233.
  2. S. Jamil, S. Jeong, S. Vigneswaran, Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant, Sep. Purif. Technol., 171 (2016) 182–190.
  3. S. You, J. Lu, C.Y. Tang, X. Wang, Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane, Chem. Eng. J., 320 (2017) 532–538.
  4. S. Lee, Y.C. Kim, Calcium carbonate scaling by reverse draw solute diffusion in a forward osmosis membrane for shale gas wastewater treatment, J. Membr. Sci., 522 (2017) 257–266.
  5. K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen, Forward osmosis for application in wastewater treatment: a review, Water Res., 58 (2014) 179–197.
  6. D. Roy, M. Rahni, P. Pierre, V. Yargeau, Forward osmosis for the concentration and reuse of process saline wastewater, Chem. Eng. J., 287 (2016) 277–284.
  7. Y.-N. Wang, R. Wang, W. Li, C.Y. Tang, Whey recovery using forward osmosis – evaluating the factors limiting the flux performance, J. Membr. Sci., 533 (2017) 179–189.
  8. K.B. Petrotos, A.V. Tsiadi, E. Poirazis, D. Papadopoulos, H. Petropakis, P. Gkoutsidis, A description of a flat geometry direct osmotic concentrator to concentrate tomato juice at ambient temperature and low pressure, J. Food Eng., 97 (2010) 235–242.
  9. M. Shibuya, K. Sasaki, Y. Tanaka, M. Yasukawa, T. Takahashi, A. Kondo, H. Matsuyama, Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw, Bioresour. Technol., 235 (2017) 405–410.
  10. L. Chekli, J.E. Kim, I. El Saliby, Y. Kim, S. Phuntsho, S. Li, N. Ghaffour, T. Leiknes, H. Kyong Shon, Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution, Sep. Purif. Technol., 181 (2017) 18–28.
  11. L. Chekli, Y. Kim, S. Phuntsho, S. Li, N. Ghaffour, T. Leiknes, H.K. Shon, Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions, J. Environ. Manage., 187 (2017) 137–145.
  12. X. Li, T. He, P. Dou, S. Zhao, 2.5 Forward Osmosis and Forward Osmosis Membranes, E. Drioli, L. Giorno, E. Fontananova, Eds., Comprehensive Membrane Science and Engineering, 2nd ed., Elsevier, Oxford, 2017, pp. 95–123.
  13. Y. Hartanto, M. Zargar, X. Cui, Y. Shen, B. Jin, S. Dai, Thermoresponsive cationic copolymer microgels as high performance draw agents in forward osmosis desalination, J. Membr. Sci., 518 (2016) 273–281.
  14. X. Wang, X. Wang, P. Xiao, J. Li, E. Tian, Y. Zhao, Y. Ren, High water permeable free-standing cellulose triacetate/graphene oxide membrane with enhanced antibiofouling and mechanical properties for forward osmosis, Colloids Surf., A, 508 (2016) 327–335.
  15. S. Lim, M.J. Park, S. Phuntsho, L.D. Tijing, G.M. Nisola, W.-G. Shim, W.-J. Chung, H.K. Shon, Dual-layered nanocomposite substrate membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis, Polymer, 110 (2017) 36–48.
  16. H. Salehi, M. Rastgar, A. Shakeri, Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide, Appl. Surf. Sci., 413 (2017) 99–108.
  17. L. Shen, J. Zuo, Y. Wang, Tris(2-aminoethyl)amine in-situ modified thin-film composite membranes for forward osmosis applications, J. Membr. Sci., 537 (2017) 186–201.
  18. S. Zhang, P. Liu, Y. Chen, J. Jin, L. Hu, X. Jian, Preparation of thermally stable composite forward osmosis hollow fiber membranes based on copoly(phthalazinone biphenyl ether sulfone) substrates, Chem. Eng. Sci., 166 (2017) 91–100.
  19. N.L. Le, N.M.S. Bettahalli, S.P. Nunes, T.-S. Chung, Outerselective thin film composite (TFC) hollow fiber membranes for osmotic power generation, J. Membr. Sci., 505 (2016) 157–166.
  20. J. Wei, X. Liu, C. Qiu, R. Wang, C.Y. Tang, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, J. Membr. Sci., 381 (2011) 110–117.
  21. A.F. Faria, C. Liu, M. Xie, F. Perreault, L.D. Nghiem, J. Ma, M. Elimelech, Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control, J. Membr. Sci., 525 (2017) 146–156.
  22. P. Xiao, L.D. Nghiem, Y. Yin, X.-M. Li, M. Zhang, G. Chen, J. Song, T. He, A sacrificial-layer approach to fabricate polysulfone support for forward osmosis thin-film composite membranes with reduced internal concentration polarisation, J. Membr. Sci., 481 (2015) 106–114.
  23. D. Li, Y. Yan, H. Wang, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes, Prog. Polym. Sci., 61 (2016) 104–155.
  24. E. Yang, C.-M. Kim, J.-h. Song, H. Ki, M.-H. Ham, I.S. Kim, Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine, Carbon, 117 (2017) 293–300.
  25. N.M. Mazlan, P. Marchetti, H.A. Maples, B. Gu, S. Karan, A. Bismarck, A.G. Livingston, Organic fouling behaviour of structurally and chemically different forward osmosis membranes – a study of cellulose triacetate and thin film composite membranes, J. Membr. Sci., 520 (2016) 247–261.
  26. T.-S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287 (2012) 78–81.
  27. T. Cath, A. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  28. J. Su, S. Zhang, H. Chen, H. Chen, Y.C. Jean, T.-S. Chung, Effects of annealing on the microstructure and performance of cellulose acetate membranes for pressure-retarded osmosis processes, J. Membr. Sci., 364 (2010) 344–353.
  29. M.L. Dourson, J. Higginbotham, J. Crum, H. Burleigh-Flayer, P. Nance, N.D. Forsberg, M. Lafranconi, J. Reichard, Update: Mode of action (MOA) for liver tumors induced by oral exposure to 1,4-dioxane, Regul. Toxicol. Pharmacol., 88 (2017) 45–55.
  30. D.T. Adamson, E.A. Pina, A.E. Cartwright, S.R. Rauch, R. Hunter Anderson, T. Mohr, J.A. Connor, 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule, Sci. Total Environ., 596–597 (2017) 236–245.
  31. S. Zhang, K.Y. Wang, T.-S. Chung, H. Chen, Y.C. Jean, G. Amy, Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci., 360 (2010) 522–535.
  32. A. Figoli, T. Marino, S. Simone, E. Di Nicolò, X.M. Li, T. He, S. Tornaghi, E. Drioli, Towards non-toxic solvents for membrane preparation: a review, Green Chem., 16 (2014) 4034.
  33. Z. Li, J. Ren, A.G. Fane, D.F. Li, F.-S. Wong, Influence of solvent on the structure and performance of cellulose acetate membranes, J. Membr. Sci., 279 (2006) 601–607.
  34. A.M. Saillenfait, F. Gallissot, I. Langonné, J.P. Sabaté, Developmental toxicity of N-methyl-2-pyrrolidone administered orally to rats, Food Chem. Toxicol., 40 (2002) 1705–1712.
  35. M.A. Carnerup, M. Spanne, B.A. Jonsson, Levels of N-methyl- 2-pyrrolidone (NMP) and its metabolites in plasma and urine from volunteers after experimental exposure to NMP in dry and humid air, Toxicol. Lett., 162 (2006) 139–145.
  36. T.Y. Cath, M. Elimelech, J.R. McCutcheon, R.L. McGinnis, A. Achilli, D. Anastasio, A.R. Brady, A.E. Childress, I.V. Farr, N.T. Hancock, J. Lampi, L.D. Nghiem, M. Xie, N.Y. Yip, Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination, 312 (2013) 31–38.
  37. T.P.N. Nguyen, E.-T. Yun, I.-C. Kim, Y.-N. Kwon, Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis, J. Membr. Sci., 433 (2013) 49–59.
  38. C.M. Hansen, Hansen Solubility Parameters A User’s Handbook, CRC Press, New York, 2006.
  39. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1996.
  40. J.G. Speight, Lange’s Handbook of Chemistry, McGraw-Hill Companies, Inc., Wyoming, 1972.
  41. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, London, 1997.
  42. R.C. Ong, T.-S. Chung, Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis, J. Membr. Sci., 394–395 (2012) 230–240.
  43. T.A. Tweddle, W.S. Peterson, A.E. Fouda, S. Sourirajan, Effect of casting variables on the performance of tubular cellulose acetate reverse osmosis membranes, Ind. Eng. Chem. Prod. Res. Dev., 20 (1981) 496–501.
  44. R.E. Kesting, Four tiers of structure integrally skinned phase inversion membranes and their relevance to the various separation regimes, J. Appl. Polym. Sci., 41 (1990) 2739–2752.
  45. J. Su, Q. Yang, J.F. Teo, T.-S. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes, J. Membr. Sci., 355 (2010) 36–44.
  46. G. Li, X.-M. Li, T. He, B. Jiang, C. Gao, Cellulose triacetate forward osmosis membranes: preparation and characterization, Desal. Wat. Treat., 51 (2013) 2656–2665.