References

  1. C. Xiong, M. Yuan, Y. Caiping, S. Chen, Adsorption of erbium (III) on D113-III resin from aqueous solutions: batch and column studies, J. Rare Earths, 27 (2009) 923–931.
  2. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211 (2012) 317–331.
  3. N. Van Nguyen, A. Iizuka, E. Shibata, T. Nakamura, Study of adsorption behavior of a new synthesized resin containing glycol amic acid group for separation of scandium from aqueous solutions, Hydrometallurgy, 165 (2016) 51–56.
  4. T. Miaomiao, J. Qiong, L. Wuping, Studies on synergistic solvent extraction of rare earth elements from nitrate medium by mixtures of 8-hydroxyquinoline with Cyanex 301 or Cyanex 302, J. Rare Earths., 31 (2013) 604–608.
  5. S. Tong, X. Zhao, N. Song, Q. Jia, W. Zhou, W. Liao, Solvent extraction study of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid with Cyanex301 or Cyanex302, Hydrometallurgy, 100 (2009) 15–19.
  6. M.A. Maheswari, M. Subramanian, Selective enrichment of U (VI), Th (IV) and La (III) from high acidic streams using a new chelating ion-exchange polymeric matrix, Talanta, 64 (2004) 202–209.
  7. V. Jain, R. Pandya, S. Pillai, Y. Agrawal, P. Kanaiya, Solid-phase extractive preconcentration and separation of lanthanum (III) and cerium (III) using a polymer-supported chelating calix
  8. arene resin, J. Anal. Chem., 62 (2007) 104–112.
  9. V. Jain, A. Handa, R. Pandya, P. Shrivastav, Y. Agrawal, Polymer supported calix
  10. arene-semicarbazone derivative for separation and preconcentration of La (III), Ce (III), Th (IV) and U (VI), React. Funct. Polym., 51 (2002) 101–110.
  11. B. Esma, A. Omar, D.M. Amine, Comparative study on lanthanum (III) sorption onto Lewatit TP 207 and Lewatit TP 260, J. Radioanal. Nucl., 299 (2014) 439–446.
  12. A.A. Tolba, S.I. Mohamady, S.S. Hussin, T. Akashi, Y. Sakai, A.A. Galhoum, E. Guibal, Synthesis and characterization of poly (carboxymethyl)-cellulose for enhanced La (III) sorption, Carbohydr. Polym., 157 (2017) 1809–1820.
  13. S.S. Gupta, K.G. Bhattacharyya, Adsorption of heavy metals on kaolinite and montmorillonite: a review, Phys. Chem. Chem. Phys., 14 (2012) 6698–6723.
  14. K. Foo, B. Hameed, An overview of landfill leachate treatment via activated carbon adsorption process, J. Hazard. Mater., 171 (2009) 54–60.
  15. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater., 157 (2008) 220–229.
  16. L. Nouri, I. Ghodbane, O. Hamdaoui, M. Chiha, Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran, J. Hazard. Mater., 149 (2007) 115–125.
  17. A.A. Galhoum, K.M. Hassan, O.A. Desouky, A.M. Masoud, T. Akashi, Y. Sakai, E. Guibal, Aspartic acid grafting on cellulose and chitosan for enhanced Nd (III) sorption, React. Funct. Polym., 113 (2017) 13–22.
  18. X. Wang, B.S. Hsiao, Electrospun nanofiber membranes, Curr. Opin. Chem. Eng., 12 (2016) 62–81.
  19. Y. Li, J. Zhang, C. Xu, Y. Zhou, Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption, Sci. China Chem., 59 (2016) 95–105.
  20. X.C. Dong, D. Cao, Y. Shi, Z.F. Fu, Fast removal of Cu (II) from aqueous solutions by PET nanofibrous membrane modified with acryamide, Adv. Mater. Res., 750–752 (2013) 1343–1346.
  21. T. Ogata, H. Narita, M. Tanaka, Immobilization of diglycol amic acid on silica gel for selective recovery of rare earth elements, Chem. Lett., 43 (2014) 1414–1416.
  22. A.A. Galhoum, M.G. Mahfouz, S.T. Abdel-Rehem, N.A. Gomaa, A.A. Atia, T. Vincent, E. Guibal, Diethylenetriaminefunctionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd (III), Dy (III) and Yb (III)], Cellulose, 22 (2015) 2589–2605.
  23. P. Kim, A. Anderko, A. Navrotsky, R.E. Riman, Trends in Structure and thermodynamic properties of normal rare earth carbonates and rare earth hydroxycarbonates, Minerals, 8 (2018) 106.
  24. M.I. Moustafa, N.A. Abdelfattah, Physical and chemical beneficiation of the Egyptian beach monazite, Resour. Geol., 60 (2010) 288–299.
  25. S. Massari, M. Ruberti, Rare earth elements as critical raw materials: focus on international markets and future strategies, Resour. Policy, 38 (2013) 36–43.
  26. R. Blissett, N. Smalley, N. Rowson, An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content, Fuel, 119 (2014) 236–239.
  27. V.V. Seredin, S. Dai, Y. Sun, I.Y. Chekryzhov, Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies, Appl. Geochem., 31 (2013) 1–11.
  28. D. Wu, C. Niu, D. Li, Y. Bai, Solvent extraction of scandium (III), yttrium (III), lanthanum (III) and gadolinium (III) using Cyanex 302 in heptane from hydrochloric acid solutions, J. Alloys Comp., 374 (2004) 442–446.
  29. D. Kołodyńska, Z. Hubicki, Investigation of Sorption and Separation of Lanthanides on the Ion Exchangers of Various Types, A. Kilislioğlu, Ed., Ion Exchange Technologies, INTECH, 2012, doi:10.5772/50857.
  30. X. Du, T.E. Graedel, Global in-use stocks of the rare earth elements: a first estimate, Environ. Sci. Technol., 45 (2011) 4096–4101.
  31. F. Zereen, V. Yilmaz, Z. Arslan, Solid phase extraction of rare earth elements in seawater and estuarine water with 4-(2-thiazolylazo) resorcinol immobilized Chromosorb 106 for determination by inductively coupled plasma mass spectrometry, Microchem. J., 110 (2013) 178–184.
  32. C.P. Eze, O. Fatoba, G. Madzivire, T.M. Ostrovnaya, L.F. Petrik, M.V. Frontasyeva, A.N. Nechaev, Elemental composition of fly ash: a comparative study using nuclear and related analytical techniques/Sklad Pierwiastkowy Popiolow Lotnych: Studium Przypadku z Wykorzystaniem Metod Nuklearnych i Analitycznych, Chem. Didact. Ecol. Metrol., 18 (2013) 19–29.
  33. H. Yoon, C. Kim, K.W. Chung, J. Lee, S.M. Shin, S. Lee, A. Joe, S. Lee, S. Yoo, Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore, Korean J. Chem. Eng., 31 (2014) 1766–1772.
  34. S. Zhang, M. Yang, H. Liu, D. Pan, J. Tian, Recovery of waste rare earth fluorescent powders by two steps acid leaching, Rare Metals, 32 (2013) 609–615.
  35. H. El-Didamony, M. Ali, N. Awwad, M. Fawzy, M. Attallah, Treatment of phosphogypsum waste using suitable organic extractants, J. Radioanal. Nucl., 291 (2012) 907–914.
  36. Y. Qu, B. Lian, Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10, Bioresour. Technol., 136 (2013) 16–23.
  37. B.R. Reddy, B.N. Kumar, S. Radhika, Solid‐liquid extraction of terbium from phosphoric acid medium using bifunctional phosphinic acid resin, Tulsion CH‐96, Solvent Extract. Ion Exchan., 27 (2009) 695–711.
  38. T.P. Rao, R. Kala, S. Daniel, Metal ion-imprinted polymers— novel materials for selective recognition of inorganics, Anal. Chim. Acta, 578 (2006) 105–116.
  39. Y. Ku, I. Jung, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res., 35 (2001) 135–142.
  40. J.R. Parga, D.L. Cocke, J.L. Valenzuela, J.A. Gomes, M. Kesmez, G. Irwin, H. Moreno, M. Weir, Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico, J. Hazard. Mater., 124 (2005) 247–254.
  41. H. Polat, D. Erdogan, Heavy metal removal from waste waters by ion flotation, J. Hazard. Mater., 148 (2007) 267–273.
  42. L. Marder, A.M. Bernardes, J. Zoppas Ferreira, Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system, Sep. Purif. Technol., 37 (2004) 247–255.
  43. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  44. S. Vigneswaran, H.H. Ngo, D.S. Chaudhary, Y. Hung, Physicochemical treatment processes for water reuse, L.K. Wang, Y.-T. Hung, N.K. Shammas, Eds., Physicochemical treatment processes. Handbook of Environmental Engineering 3, Humana Press, New York, 2005, pp. 635–676.
  45. X.J. Yang, A.G. Livingston, L. Freitas dos Santos, Experimental observations of nanofiltration with organic solvents, J. Membr. Sci., 190 (2001) 45–55.
  46. L.J.J. Janssen, L. Koene, The role of electrochemistry and electrochemical technology in environmental protection, Chem. Eng. J., 85 (2002) 137–146.
  47. T. Vander Hoogerstraete, S. Wellens, K. Verachtert, K. Binnemans, Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling, Green Chem., 15 (2013) 919–927.
  48. J. Rydberg, Solvent Extraction Principles and Practice, revised and expanded. 2nd ed., Marcel Dekker, INC., New York, 2004, p. 480.
  49. K. Foo, B. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  50. R.D. Abreu, C.A. Morais, Study on separation of heavy rare earth elements by solvent extraction with organophosphorus acids and amine reagents, Minerals Eng., 61 (2014) 82–87.
  51. N. Das, D. Das, Recovery of rare earth metals through biosorption: an overview, J. Rare Earths., 31 (2013) 933–943.
  52. T. Vander Hoogerstraete, K. Binnemans, Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl (tetradecyl) phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries, Green Chem., 16 (2014) 1594–1606.
  53. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  54. Y. Jiang, A. Shibayama, K. Liu, T. Fujita, A hydrometallurgical process for extraction of lanthanum, yttrium and gadolinium from spent optical glass, Hydrometallurgy, 76 (2005) 1–9.
  55. K.A. Quinn, R.H. Byrne, J. Schijf, Comparative scavenging of yttrium and the rare earth elements in seawater: competitive influences of solution and surface chemistry, Aquat. Geochem., 10 (2004) 59–80.
  56. X. Chen, G. Chen, P.L. Yue, Investigation on the electrolysis voltage of electrocoagulation, Chem. Eng. Sci., 57 (2002) 2449–2455.
  57. Z. Murthy, S. Parmar, Removal of strontium by electrocoagulation using stainless steel and aluminum electrodes, Desalination, 282 (2011) 63–67.
  58. T.A. Kurniawan, G. Chan, W. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83–98.
  59. J. Xu, X. Xu, J. Wang, Synthesis of 1-hydroxy-2-naphthylhydroximic acid and application to collecting rare earth minerals, Nonferrous Metals-Beijing, 54 (2002) 72–73.
  60. M. Hammami, D.J. Ennigrou, K.H. Naifer, M. Ferid, Retention of samarium ions from aqueous solutions by poly (acrylic acid)-enhanced ultrafiltration, Desal. Wat. Treat., 56 (2015) 2715–2722.
  61. N. Ahalya, T. Ramachandra, R. Kanamadi, Biosorption of heavy metals, Res. J. Chem. Environ., 7 (2003) 71–79.
  62. J. Tang, W. Zhang, K. Zhou, Q. Zhang, Feasibility study of the waste acids recovery by membrane techniques in rare earth metallurgy, Mining Metal. Eng., 6 (2007) 018.
  63. A. Matin, Z. Khan, S.M.J. Zaidi, M.C. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention, Desalination, 281 (2011) 1–16.
  64. M. Lawrence, J. Keller, Y. Poussade, Removal of magnetic resonance imaging contrast agents through advanced water treatment plants, IWA Publishing, 61 (2010) 685–692.
  65. A. Seidel, J.J. Waypa, M. Elimelech, Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane, Environ. Eng. Sci., 18 (2001) 105–113.
  66. Z. Murthy, A. Choudhary, Application of nanofiltration to treat rare earth element (neodymium) containing water, J. Rare Earths., 29 (2011) 974–978.
  67. T. Oishi, H. Konishi, T. Nohira, M. Tanaka, T. Usui, Separation and recovery of rare earth metals by molten salt electrolysis using alloy diaphragm, Kagaku Kogaku Ronbunshu., 36 (2010) 299–303.
  68. F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions, Minerals Eng., 56 (2014) 10–28.
  69. X. Wang, W. Li, S. Meng, D. Li, The extraction of rare earths using mixtures of acidic phosphorus‐based reagents or their thio‐analogues, J. Chem. Technol. Biotechnol., 81 (2006) 761–766.
  70. A. Bhattacharyya, P. Mohapatra, A. Roy, T. Gadly, S. Ghosh, V. Manchanda, Ethyl-bis-triazinylpyridine (Et-BTP) for the separation of americium (III) from trivalent lanthanides using solvent extraction and supported liquid membrane methods, Hydrometallurgy, 99 (2009) 18–24.
  71. N. Panda, N.B. Devi, S. Mishra, Extraction of neodymium (III) using binary mixture of Cyanex 272 and Cyanex 921/Cyanex 923 in kerosene, J. Radioanal. Nucl., 296 (2013) 1205–1211.
  72. H. Naganawa, K. Shimojo, H. Mitamura, Y. Sugo, J. Noro, M. Goto, A new “green” extractant of the diglycol amic acid type for lanthanides, Solvent Extract. Res. Develop., 14 (2007) 151–159.
  73. K. Sakaki, H. Sugahara, T. Kume, M. Ohashi, H. Naganawa, K. Shimojo, Method for Synthesizing Rare Earth Metal Extractant, Shin-Etsu Chemical Co., Ltd., Japan Atomic Energy Agency. Inventors US, 2015, 9133100 B2.
  74. K. Shimojo, H. Naganawa, J. Noro, F. Kubota, M. Goto, Extraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligand, Anal. Sci., 23 (2007) 1427–1430.
  75. F. Kubota, Y. Shimobori, Y. Baba, Y. Koyanagi, K. Shimojo, N. Kamiya, M. Goto, Application of ionic liquids to extraction separation of rare earth metals with an effective diglycol amic acid extractant, J. Chem. Eng. Japan, 44 (2011) 307–312.
  76. K. Shimojo, N. Aoyagi, T. Saito, H. Okamura, F. Kubota, M. Goto, H. Naganawa, Highly efficient extraction separation of lanthanides using a diglycolamic acid extractant, Anal. Sci., 30 (2014) 263–269.
  77. H. Narita, M. Tanaka, Separation of rare earth elements from base metals in concentrated HNO3, H2SO4 and HCl solutions with diglycolamide, Solvent Extract. Res. Develop., Japan, 20 (2013) 115–121.
  78. N. Van Nguyen, J. Lee, J. Jeong, B. Pandey, Enhancing the adsorption of chromium (VI) from the acidic chloride media using solvent impregnated resin (SIR), Chem. Eng. J., 219 (2013) 174–182.
  79. D.S. Lakshmi, M. Muthukumar, D. Mohan, Extraction of zinc (II) using liquid membrane and performance optimization using response surface methodology, CSIR, 63 (2004) 74–79.
  80. S. Ganji, M. Seyyed, S. Shafaie, N. Goudarzi, Investigation of performances of solvents D2EHPA, Cyanex272, and their mixture system in separation of some rare earth elements from a nitric acid solution, J. Mining Environ., 7 (2016) 143–148.
  81. A.N. Pustam, S.D. Alexandratos, Engineering selectivity into polymer-supported reagents for transition metal ion complex formation, React. Funct. Polym., 70 (2010) 545–554.
  82. B.L. Rivas, J. Sánchez, B.F. Urbano, Polymers and nanocomposites: synthesis and metal ion pollutant uptake, Polym. Int., 65 (2016) 255–267.
  83. A. Dabrowski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56 (2004) 91–106.
  84. F. Waqar, S. Jan, B. Mohammad, M. Hakim, S. Alam, W. Yawar, Preconcentration of rare earth elements in seawater with chelating resin having fluorinated β‐diketone immobilized on styrene divinyl benzene for their determination by ICP‐OES, J. Chin. Chem. Soc., 56 (2009) 335–340.
  85. C.S.K. Raju, M. Subramanian, Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes, J. Hazard. Mater., 145 (2007) 315–322.
  86. G. Yan, T. Viraraghavan, Heavy-metal removal from aqueous solution by fungus Mucor rouxii, Water Res., 37 (2003) 4486–4496.
  87. N. Tewari, P. Vasudevan, B. Guha, Study on biosorption of Cr (VI) by Mucor hiemalis, Biochem. Eng. J., 23 (2005) 185–192.
  88. R.C. Oliveira, C. Jouannin, E. Guibal, O. Garcia, Samarium (III) and praseodymium (III) biosorption on Sargassum sp.: batch study, Process Biochem., 46 (2011) 736–744.
  89. D. Das, C.J.S. Varshini, N. Das, Recovery of lanthanum (III) from aqueous solution using biosorbents of plant and animal origin: batch and column studies, Minerals Eng., 69 (2014) 40–56.
  90. M.C. Palmieri, O. Garcia, P. Melnikov, Neodymium biosorption from acidic solutions in batch system, Process Biochem., 36 (2000) 441–444.
  91. C.A. Bode-Aluko, O. Pereao, G. Ndayambaje, L. Petrik, Adsorption of toxic metals on modified polyacrylonitrile nanofibres: a review, Water Air Soil Pollut., 228 (2017) 35.
  92. L. Wang, L. Yang, Y. Li, Y. Zhang, X. Ma, Z. Ye, Study on adsorption mechanism of Pb(II) and Cu(II) in aqueous solution using PS-EDTA resin, Chem. Eng. J., 163 (2010) 364–372.
  93. A.M. Younis, A.V. Kolesnikov, A.V. Desyatov, Efficient removal of La (III) and Nd (III) from aqueous solutions using carbon nanoparticles, Amer. J. Anal. Chem., 5 (2014) 1273.
  94. T. Ogata, H. Narita, M. Tanaka, Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid, Hydrometallurgy, 152 (2015) 178–182.
  95. D. Lakherwal, Adsorption of heavy metals: a review, Int. J. Environ. Res. Develop., 4 (2014) 41–48.
  96. N.E. Zander, Chelating Polymers and Environmental Remediation, Defence Technical Information Center (DTIC) Document, 2009, ADA495762.
  97. J.U. Keller, R. Staudt, Gas adsorption equilibria: experimental methods and adsorptive isotherms, Springer Science & Business Media, New York, USA, 2005, pp. 1–421.
  98. J. Zhao, X. Ding, C. Meng, C. Ren, H. Fu, H. Yang, Adsorption and immobilization of actinides using novel SiO2–ZrO2-calcium alginate aerogels from high level liquid waste, Prog. Nucl. Energy, 85 (2015) 713–718.
  99. G.Z. Kyzas, D.N. Bikiaris, Recent modifications of chitosan for adsorption applications: a critical and systematic review, Marine Drugs, 13 (2015) 312–337.
  100. M. Kobya, Removal of Cr (VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies, Bioresour. Technol., 91 (2004) 317–321.
  101. A. Nakajima, Y. Baba, Mechanism of hexavalent chromium adsorption by persimmon tannin gel, Water Res., 38 (2004) 2859–2864.
  102. V.O. Sousa Neto, G.S.C. Raulino, P.T.C. Freire, M.A. Araújo-Silva, R.F. do Nascimento, Equilibrium and kinetic studies in adsorption of toxic metal ions for wastewater treatment, Viewpoints, 7 (2013) 8.
  103. O. Olafadehan, O. Jinadu, L. Salami, L. Popoola, Treatment of brewery wastewater effluent using activated carbon prepared from coconut shell, Int. J. Appl. Sci. Technol., 2 (2012) 165–178.
  104. B. Crittenden, W.J. Thomas, Adsorption technology and design. Technology & Engineering, Butterworth-Heinemann, Oxford, 1998, pp. 1–288.
  105. J.P. Ruparelia, S.P. Duttagupta, A.K. Chatterjee, S. Mukherji, Potential of carbon nanomaterials for removal of heavy metals from water, Desalination, 232 (2008) 145–156.
  106. F. Zhao, E. Repo, M. Sillanpää, Y. Meng, D. Yin, W.Z. Tang, Green synthesis of magnetic EDTA-and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals, Ind. Eng. Chem. Res., 54 (2015) 1271–1281.
  107. D. Dupont, W. Brullot, M. Bloemen, T. Verbiest, K. Binnemans, Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles, ACS Appl. Mater. Interf., 6 (2014) 4980–4988.
  108. D. Wu, Y. Sun, Q. Wang, Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites, J. Hazard. Mater., 260 (2013) 409–419.
  109. P. Jal, S. Patel, B. Mishra, Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions, Talanta, 62 (2004) 1005–1028.
  110. E. Matoso, L. Kubota, S. Cadore, Use of silica gel chemically modified with zirconium phosphate for preconcentration and determination of lead and copper by flame atomic absorption spectrometry, Talanta, 60 (2003) 1105–1111.
  111. F. Xie, X. Lin, X. Wu, Z. Xie, Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acidmodified silica gel prior to determination by flame atomic absorption spectrometry, Talanta, 74 (2008) 836–843.
  112. P. Liang, X. Chen, Preconcentration of rare earth elements on silica gel loaded with 1-phenyl-3-methyl-4-benzoylpyrazol- 5-one prior to their determination by ICP-AES, Anal. Sci., 21 (2005) 1185–1188.
  113. S. Berijani, M.R. Ganjali, H. Sereshti, P. Norouzi, A selective modified nanoporous silica as sorbent for separation and preconcentration of dysprosium in water samples prior to ICP-OES determination, Int. J. Environ. Anal. Chem., 92 (2012) 355–365.
  114. N. Fontanals, R.M. Marcé, F. Borrull, Overview of the novel sorbents available in solid-phase extraction to improve the capacity and selectivity of analytical determinations, Contrib. Sci., 6 (2011) 199–213.
  115. N. Seko, M. Tamada, F. Yoshii, Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques, Nucl. Instrum. Methods Phys. Res. Section B: Beam Interact. Mater. Atoms, 236 (2005) 21–29.
  116. K. Kondo, E. Kamio, Separation of rare earth metals with a polymeric microcapsule membrane, Desalination, 144 (2002) 249–254.
  117. J. Roosen, K. Binnemans, Adsorption and chromatographic separation of rare earths with EDTA-and DTPA-functionalized chitosan biopolymers, J. Mater. Chem. A., 2 (2014) 1530–1540.
  118. M. Huang, H. Lu, X. Li, Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate, J. Mater. Chem., 22 (2012) 17685–17699.
  119. X. Li, X. Ma, J. Sun, M. Huang, Powerful reactive sorption of silver (I) and mercury (II) onto poly (o-phenylenediamine) microparticles, Langmuir, 25 (2009) 1675–1684.
  120. X. Li, H. Feng, M. Huang, Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents, Chem. A Europ. J., 15 (2009) 4573–4581.
  121. Q. Lü, M. Huang, X. Li, Synthesis and heavy‐metal‐ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability, Chem. A Europ. J., 13 (2007) 6009–6018.
  122. G. Dharanivasan, T. Rajamuthuramalingam, D.M.I. Jesse, N. Rajendiran, K. Kathiravan, Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces, Appl. Nanosci., 5 (2015) 39–50.
  123. I. Leonor, H. Kim, F. Balas, M. Kawashita, R. Reis, T. Kokubo, T. Nakamura, Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer, J. Mater. Sci. Mater. Med., 18 (2007) 1923–1930.
  124. D.H. Shin, Y.G. Ko, U.S. Choi, W.N. Kim, Design of high efficiency chelate fibers with an amine group to remove heavy metal ions and pH-related FT-IR analysis, Ind. Eng. Chem. Res., 43 (2004) 2060–2066.
  125. A. Bahramzadeh, P. Zahedi, M. Abdouss, Acrylamide‐plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions, J. Appl. Polym. Sci., 133 (2016) 42944–42953.
  126. R. Rahal, F. Annani, S. Pellet-Rostaing, G. Arrachart, S. Daniele, Surface modification of titanium oxide nanoparticles with chelating molecules: new recognition devices for controlling the selectivity towards lanthanides ionic separation, Sep. Purif. Technol., 147 (2015) 220–226.
  127. T. Kajiya, M. Aihara, S. Hirata, Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with on-line column pre-concentration using 8-quinolinole-immobilized fluorinated metal alkoxide glass, Spectrochim. Acta Part B: Atomic Spectroscopy, 59 (2004) 543–550.
  128. Y. Sohrin, S. Iwamoto, S. Akiyama, T. Fujita, T. Kugii, H. Obata, E. Nakayama, S. Goda, Y. Fujishima, H. Hasegawa, Determination of trace elements in seawater by fluorinated metal alkoxide glass-immobilized 8-hydroxyquinoline concentration and high-resolution inductively coupled plasma mass spectrometry detection, Anal. Chim. Acta, 363 (1998) 11–19.
  129. Y. Agrawal, H. Kaur, S. Menon, Poly (styrene-p-hydroxamic acids): synthesis, and ion exchange separation of rare earths, React. Funct. Polym., 39 (1999) 155–164.
  130. S.A. Kumar, S.P. Pandey, N.S. Shenoy, S.D. Kumar, Matrix separation and preconcentration of rare earth elements from seawater by poly hydroxamic acid cartridge followed by determination using ICP-MS, Desalination, 281 (2011) 49–54.
  131. Y. Yang, S.D. Alexandratos, Mechanism of ionic recognition by polymer-supported reagents: immobilized tetramethylmalonamide and the complexation of lanthanide ions, Inorg. Chem., 49 (2010) 1008–1016.
  132. M. Nogami, I. Ismail, M. Yamaguchi, K. Suzuki, Synthesis, characterization and some adsorption properties of TMMA chelating resin, J. Solid State Chem., 171 (2003) 353–357.
  133. C. Karadaş, D. Kara, A. Fisher, Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with off-line column preconcentration using 2, 6-diacetylpyridine functionalized Amberlite XAD-4, Anal. Chim. Acta, 689 (2011) 184–189.
  134. V.K. Jain, A. Handa, S.S. Sait, P. Shrivastav, Y.K. Agrawal, Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone, Anal. Chim. Acta, 429 (2001) 237–246.
  135. O. Pereao, C. Bode-Aluko, G. Ndayambaje, O. Fatoba, L. Petrik, Electrospinning: polymer nanofibre adsorbent applications for metal ion removal, J. Polym. Environ., 25 (2017) 1175–1189.
  136. N. Hiremath, G. Bhat, Melt blown polymeric nanofibers for medical applications-an overview, Nanosci. Technol., 2 (2015) 1–9.
  137. S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, Z. Ma, An introduction to electrospinning and nanofibers, World Scient., 90 (2005) 341.
  138. A. Rahmani, H.Z. Mousavi, M. Fazli, Effect of nanostructure alumina on adsorption of heavy metals, Desalination, 253 (2010) 94–100.
  139. S. Sharma, Ferroelectric nanofibers: principle, processing and applications, Adv. Mater. Lett., 4 (2013) 522–533.
  140. J. Fang, H. Niu, T. Lin, X. Wang, Applications of electrospun nanofibers, Chinese Sci. Bull., 53 (2008) 2265–2286.
  141. D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers, Polymer, 49 (2008) 2387–2425.
  142. Z. Huang, Y. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Sci. Technol., 63 (2003) 2223–2253.
  143. V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications, Energy Environ. Sci., 1 (2008) 205–221.
  144. C.S. Ki, E.H. Gang, I.C. Um, Y.H. Park, Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption, J. Membr. Sci., 302 (2007) 20–26.
  145. W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei, M. Sun, Y. Li, Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2 in aqueous solution via copolymerization and electrospinning, J. Hazard. Mater., 194 (2011) 185–192.
  146. S. Musyoka, C. Ngila, B. Moodley, A. Kindness, L. Petrik, C. Greyling, Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption, J. Hazard. Mater., 192 (2011) 922–927.
  147. S. Li, X. Yue, Y. Jing, S. Bai, Z. Dai, Fabrication of zonal thiolfunctionalized silica nanofibers for removal of heavy metal ions from wastewater, Colloids Surfaces A: Phys. Eng. Asp., 380 (2011) 229–233.
  148. Y. Tian, M. Wu, R. Liu, Y. Li, D. Wang, J. Tan, R. Wu, Y. Huang, Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment, Carbohydr. Polym., 83 (2011) 743–748.
  149. S. Wu, F. Li, H. Wang, L. Fu, B. Zhang, G. Li, Effects of poly (vinyl alcohol)(PVA) content on preparation of novel thiolfunctionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution, Polymer, 51 (2010) 6203–6211.
  150. S. Abbasizadeh, A.R. Keshtkar, M.A. Mousavian, Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution, Chem. Eng. J., 220 (2013) 161–171.
  151. D.K. Sharma, F. Li, Y. Wu, Electrospinning of Nafion and polyvinyl alcohol into nanofiber membranes: a facile approach to fabricate functional adsorbent for heavy metals, Colloids Surf. Physicochem. Eng. Aspects, 457 (2014) 236–243.
  152. M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution, J. Taiwan Inst. Chem. Eng., 45 (2014) 518–526.
  153. P. Kampalanonwat, P. Supaphol, The study of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofiber mats, Energy Procedia, 56 (2014) 142–151.
  154. A. Razzaz, S. Ghorban, L. Hosayni, M. Irani, M. Aliabadi, Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions, J. Taiwan Inst. Chem. Eng., 58 (2016) 333–343.
  155. G. Ndayambaje, K. Laatikainen, M. Laatikainen, E. Beukes, O. Fatoba, N. van der Walt, L. Petrik, T. Sainio, Adsorption of nickel (II) on polyacrylonitrile nanofiber modified with 2-(2'-pyridyl) imidazole, Chem. Eng. J., 284 (2016) 1106–1116.
  156. Y. Lu, Z. Wu, M. Li, Q. Liu, D. Wang, Hydrophilic PVA-co-PE nanofiber membrane functionalized with iminodiacetic acid by solid-phase synthesis for heavy metal ions removal, React. Funct. Polym., 82 (2014) 98–102.
  157. M. Shimamura, K. Teramoto, T. Yoshioka, M. Tanaka, Polystyrene-based functional fibers, Handbook Fiber Sci. Technol., 3 (1989) 209–252.
  158. Y. Yang, S.D. Alexandratos, Affinity of polymer-supported reagents for lanthanides as a function of donor atom polarizability, Ind. Eng. Chem. Res., 48 (2009) 6173–6187.
  159. T.P. Rao, R. Praveen, S. Daniel, Styrene–divinyl benzene copolymers: synthesis, characterization, and their role in inorganic trace analysis, Crit. Rev. Anal. Chem., 34 (2004) 177–193.
  160. G. Hong, L. Shen, M. Wang, Y. Yang, X. Wang, M. Zhu, B.S. Hsiao, Nanofibrous polydopamine complex membranes for adsorption of Lanthanum (III) ions, Chem. Eng. J., 244 (2014) 307–316.
  161. G. Hong, M. Wang, X. Li, L. Shen, X. Wang, M. Zhu, B.S. Hsiao, Micro-nano structure nanofibrous p-sulfonatocalix
  162. arene complex membranes for highly efficient and selective adsorption of lanthanum (III) ions in aqueous solution, RSC Adv., 5 (2015) 21178–21188.
  163. A. Baghel, M. Boopathi, B. Singh, P. Pandey, T. Mahato, P. Gutch, K. Sekhar, Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper, Biosensors Bioelectronics., 22 (2007) 3326–3334.
  164. C. Branger, W. Meouche, A. Margaillan, Recent advances on ion-imprinted polymers, React. Funct. Polym., 73 (2013) 859–875.
  165. J. Wang, J. Wei, J. Li, Straw-supported ion imprinted polymer sorbent prepared by surface imprinting technique combined with AGET ATRP for selective adsorption of La 3 ions, Chem. Eng. J., 293 (2016) 24–33.
  166. R. Garcia, O. Vigneau, C. Pinel, M. Lemaire, Solid–liquid lanthanide extraction with ionic-imprinted polymers, Sep. Sci. Technol., 37 (2002) 2839–2857.