References

  1. S. Shokrollahzadeh, F. Azizmohseni, F. Golmohammad, H. Shokouhi, F. Khademhaghighat, Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran, Bioresour. Technol., 99 (2008) 6127–6133.
  2. K. Hashimoto, M. Matsuda, D. Inoue, M. Ike, Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process, J. Biosci. Bioeng., 118 (2014) 64–71.
  3. X. Wang, Y. Xia, X. Wen, Y. Yang, J. Zhou, Microbial community functional structures in wastewater treatment plants as characterized by geochip, PLoS One., 9 (2014) e93422.
  4. V.M.F. Alexandre, T.M.S. de Castro, L.V. de Araújo, V.M.J. Santiago, D.M.G. Freire, M.C. Cammarota, Minimizing solid wastes in an activated sludge system treating oil refinery wastewater, Chem. Eng. Process, 103 (2016) 53–62.
  5. A. Behnami, M. Shakerkhatibi, R. Dehghanzadeh, K.Z. Benis, S. Derafshi, E. Fatehifar, The implementation of data reconciliation for evaluating a full-scale petrochemical wastewater treatment plant, Environ. Sci. Pollut. Res., 23 (2016) 22586–22595.
  6. K.Z. Benis, M. Shakerkhatibi, R. Yousefi, D. Kahforoushan, S. Derafshi, Emission patterns of acrylonitrile and styrene around an industrial wastewater treatment plant in Iran, Int. J. Environ. Sci. Technol., 13 (2016) 2353–2362.
  7. K. Obahiagbon, E. Agbonghae, N. Amenaghawon, Effect of microbial load of Aspergillus niger and Pseudomonas aeruginosa on the bioremediation of crude oil polluted water, J. Mater. Environ. Sci., 5 (2014) 1786–1791.
  8. Y. Chao, Y. Mao, K. Yu, T. Zhang, Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach, Appl. Microbiol. Biotechnol., 100 (2016) 8225–8237.
  9. H. Yahong, Q. Shan, M. Fang, W. Jue, Short-term and long-term effects of tourmaline on activated sludge viability and performance, Water Air Soil Pollut., 228 (2017) 395.
  10. Q. Yang, F.E. Angly, Z. Wang, H. Zhang, Wastewater treatment systems harbor specific and diverse yeast communities, Biochem. Eng. J., 58–59 (2011) 168–176.
  11. B. Song, G. Zeng, J. Gong, J. Liang, P. Xu, Z. Liu, Y. Zhang, C. Zhang, M. Cheng, Y. Liu, S. Ye, H. Yi, X. Ren, Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals, Environ. Int., 105 (2017) 43–55.
  12. A. Behnami, D. Farajzadeh, S. Isazadeh, K.Z. Benis, M. Shakerkhatibi, Z. Shiri, S. Ghorghanlu, A. Yadeghari, Diversity of bacteria in a full-scale petrochemical wastewater treatment plant experiencing stable hydrocarbon removal, J. Water Process Eng., 23 (2018) 285–291.
  13. R. Chandra, R.N. Bharagava, A. Kapley, H.J. Purohit, Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater, Bioresour. Technol., 102 (2011) 2333–2341.
  14. N.P. Cheremisinoff, Biotechnology for waste and wastewater treatment, Noyes Publications, Fairview Avenue, Westwood, New Jersey 07675, United States, 1996.
  15. C. Cortés-Lorenzo, A. González-Martínez, H. Smidt, J. González-López, B. Rodelas, Influence of salinity on fungal communities in a submerged fixed bed bioreactor for wastewater treatment, Chem. Eng. J., 285 (2016) 562–572.
  16. N.F. Gray, Biology of wastewater treatment, 2nd ed., Imperial College Press, United Kingdom, 2004.
  17. L. Tebbouche, D. Hank, S. Zeboudj, A. Namane, A. Hellal, Evaluation of the phenol biodegradation by Aspergillus niger: application of full factorial design methodology, Desal. Water Treat., 57 (2015) 6124–6130.
  18. L. Niu, Y. Li, L. Xu, P. Wang, W. Zhang, C. Wang, W. Cai, L. Wang, Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics, Environ. Sci. Pollut. Res., (2016) 1–9.
  19. V.L. Santos, V.R. Linardi, Biodegradation of phenol by a filamentous fungi isolated from industrial effluents-identification and degradation potential, Process Biochem., 39 (2004) 1001– 1006.
  20. S.D. Weber, A. Hofmann, M. Pilhofer, G. Wanner, R. Agerer, W. Ludwig, K.H. Schleifer, J. Fried, The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses, FEMS Microbiol. Ecol., 68 (2009) 246– 254.
  21. A.R. MacGillivray, M.P. Shiaris, Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments, Appl. Environ. Microbiol., 59 (1993) 1613–1618.
  22. F. Chaillan, A. Le Flèche, E. Bury, Y.h. Phantavong, P. Grimont, A. Saliot, J. Oudot, Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms, Res. Microbiol., 155 (2004) 587–595.
  23. P. Balamurugan, B. Preetha, T. Virithagiri, Study on effect of operating parameters on biodegradation of phenol by Aspergillus Fumigatus, Int. J. Eng. Res. Appl., 2 (2012) 981–986.
  24. G. Sabah, E. Jatau, C. Whong, Assessment of biodegradation ability of aspergillus niger isolated from mechanic workshops soilon refinery effluent and petroleum hdrocarbons, Int. J. Sci. Res. Pub., 6 (2016) 381–389.
  25. R. Bouchiat, E. Veignie, D. Grizard, C. Soebert, M. Vigier, C. Rafin, Ability of filamentous fungi to degrade four emergent water priority pollutants, Desal. Water Treat., 57 (2016) 6740– 6746.
  26. APHA, Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, Washington, United State, 2005.
  27. J. Oudot, J. Dupont, S. Haloui, M.F. Roquebert, Biodegradation potential of hydrocarbon-assimilating tropical fungi, Soil Biol. Biochem., 25 (1993) 1167–1173.
  28. R. Margesin, G.A. Płaza, S. Kasenbacher, Characterization of bacterial communities at heavy-metal-contaminated sites, Chemosphere, 82 (2011) 1583–1588.
  29. C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948) 623–656.
  30. G. Tchobanoglous, F. Burton, H. Stensel, Wastewater engineering: treatment and reuse, fourth ed., McGraw-Hill Higher Education, New York, United State, 2003.
  31. L. Dao, T. Grigoryeva, A. Laikov, R. Devjatijarov, O. Ilinskaya, Full-scale bioreactor pretreatment of highly toxic wastewater from styrene and propylene oxide production, Ecotoxicol. Environ. Saf., 108 (2014) 195–202.
  32. G. Bitton, Wastewater microbiology, 3rd ed., John Wiley & Sons, 2005.
  33. M. Tuomela, M. Vikman, A. Hatakka, M. Itävaara, Biodegradation of lignin in a compost environment: a review, Bioresour. Technol., 72 (2000) 169–183.
  34. E.V. Blagodatskaya, T.-H. Anderson, Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and CO2 of microbial communities in forest soils, Soil Biol. Biochem., 30 (1998) 1269–1274.
  35. T.N. Evans, R.J. Seviour, Estimating biodiversity of fungi in activated sludge communities using culture-independent methods, Microb. Ecol., 63 (2012) 773–786.
  36. B. Lai, Y. Zhou, P. Yang, Treatment of wastewater from acrylonitrile–butadiene–styrene (ABS) resin manufacturing by Fe0/GAC–ABFB, Chem. Eng. J., 200–202 (2012) 10–17.
  37. D.H. Eikelboom, Process Control of Activated Sludge Plants by Microscopic Investigation, IWA Publishing, 2000.
  38. M.X. Li, A.J. Li, Q. Sun, X.M. Jiang, S.H. Chen, Enhancement of biodiesel production by cultivating Dipodascaceae moderated filamentous granular sludge with sugar-containing wastewater, Int. Biodeterior. Biodegrad., 110 (2016) 38–45.
  39. H. Dave, C. Ramakrishna, J.D. Desai, Degradation of acrylic acid by fungi from petrochemical activated sludge, Biotechnol. Lett., 18 (1996) 963–964.
  40. J. Paca, B. Koutsky, M. Maryska, M. Halecky, Styrene degradation along the bed height of perlite biofilter, J. Chem. Technol. Biotechnol., 76 (2001) 873–878.
  41. S. Das, S. Santra, Cyanide degradation by Aspergillus niger strain isolated from steel-plant wastewater, EJEAFChe 10 (2011)
  42. L. Sabatini, C. Ferrini, M. Micheloni, A. Pianetti, B. Citterio, C. Parlani, F. Bruscolini, Isolation of a strain of Aspergillus fumigatus able to grow in minimal medium added with an industrial cyanide waste, World J. Microbiol. Biotechnol., 28 (2012) 165–173.
  43. A. Fakhrul-Razi, M.Z. Alam, A. Idris, S. Abd-Aziz, A.H. Molla, Filamentous fungi in Indah Water Konsortium (IWK) sewage treatment plant for biological treatment of domestic wastewater sludge, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 37 (2002) 309–320.
  44. M. Kacprzak, E. Neczaj, E. Okoniewska, The comparative mycological analysis of wastewater and sewage sludges from selected wastewater treatment plants, Desalination, 185 (2005) 363–370.
  45. M.F. Awad, M. Kraume, Keratinophilic fungi in activated sludge of wastewater treatment plants with MBR in Berlin, Germany, Mycology, 2 (2011) 276–282.
  46. G. Helal, M. Mostafa, M. El-Said, Fungi in the sewage-treatment Zeinein plant, Cairo, Egypt, J. Basic Appl. Mycol. Egypt, 2 (2011) 69–82.
  47. T.N. Evans, G. Watson, G.N. Rees, R.J. Seviour, Comparing activated sludge fungal community population diversity using denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism, Antonie van Leeuwenhoek, 105 (2014) 559–569.
  48. W.B. Cooke, W.O. Pipes, The occurrence of fungi in activated sludge, Mycopathol. Mycol. Appl., 40 (1970) 249–270.
  49. T.T. More, S. Yan, R.D. Tyagi, R.Y. Surampalli, Potential use of filamentous fungi for wastewater sludge treatment, Bioresour. Technol., 101 (2010) 7691–7700.
  50. H. Varadarajan, S. Shikha, Biodiversity characterization of bacterial and fungal isolates from gold electroplating industry effluents, J. Appl. Environ. Microbiol., 2 (2014) 212–219.
  51. E. Bogusławska-Wąs, W. Dąbrowski, The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon, Int. J. Hyg. Environ. Health, 203 (2001) 451–458.
  52. N. Magan, J. Lacey, Effect of water activity, temperature and substrate on interactions between field and storage fungi, Trans. Brit. Mycol. Soc., 82 (1984) 83–93.
  53. M.A. Gock, A.D. Hocking, J.I. Pitt, P.G. Poulos, Influence of temperature, water activity and pH on growth of some xerophilic fungi, Int. J. Food Microbiol., 81 (2003) 11–19.
  54. A.H. Navarchian, A. Sharafi, R.K. Kermanshahi, Biodegradation Study of Starch-graft-Acrylonitrile Copolymer, J. Polym. Environ., 21 (2013) 233–244.
  55. J.C. Colombo, M. Cabello, A.M. Arambarri, Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi, Environ. Pollut., 94 (1996) 355–362.
  56. V.S. Salvo, I. Gallizia, M. Moreno, M. Fabiano, Fungal communities in PAH-impacted sediments of Genoa-Voltri Harbour (NW Mediterranean, Italy), Marine Poll. Bull., 50 (2005) 553– 559.
  57. Y.Q. Li, H.F. Liu, Z.L. Tian, L.H. Zhu, Y.H. Wu, H.Q. Tang, Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi, Biomed. Environ. Sci., 21 (2008) 181–187.
  58. A.I.I. Abdel-Hafez, H.M.M. El-Sharouny, The occurrence of keratinophilic fungi in sewage sludge from Egypt, J. Basic Microbiol., 30 (1990) 73–79.
  59. M.F. Awad, M. Kraume, The occurrence of fungi in activated sludge from MBRs, Proc. ICESE 2010: International Conference on Environmental Sciences and Engineering, 2010, pp. 540–543.
  60. M. Verma, S.K. Brar, R.D. Tyagi, R.Y. Surampalli, J.R. Valero, Industrial waste waters and dewatered sludge: rich nutrient source for production and formulation of biocontrol agent, Trichoderma viride, World J. Microbiol. Biotechnol., 23 (2007) 1695–1703.
  61. D. Smith, M.J. Ryan, J.G. Day, The UK national culture collection (UKNCC) Biological Resource: Properties, Maintenance and Management, United Kingdom national culture collection, 2001.
  62. D. Lucas, D. Barceló, S. Rodriguez-Mozaz, Removal of pharmaceuticals from wastewater by fungal treatment and reduction of hazard quotients, Sci. Total. Environ., 571 (2016) 909–915.