References

  1. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity, Sci. Adv., 351 (2016) 895–994.
  2. Y. Teng, J. Yang, R. Zuo, J. Wang, Impact of urbanization and industrialization upon surface water quality: A pilot study of Panzhihua mining town, J. Earth Sci., 22 (2011) 658–668.
  3. S.L. Postel, Entering an era of water scarcity: The challenges ahead, Ecol. Appl., 10 (2000), 941–948.
  4. T. Asano, F.L. Burton, H.L. Leverenz, R. Tsuchihashi, G. Tchobanoglous, Water Reuse: Issues, Technologies, and Applications, McGraw–Hill, New York, 71 (2007).
  5. Y. Zhu, K.M. Gupta, Q Liu, J. Jiang, J. Caro, A. Huang, Synthesis and seawater desalination of molecular sieving imidazolate framework membrane, Desalination, 385 (2016) 75–82.
  6. K. Xu, B. Feng, C. Zhou, A. Huang, Synthesis of highly stable graphene oxide membrane on polydopamine functionalized supports for seawater desalination, Chem. Eng. Sci., 145 (2016) 159–165.
  7. J. Koola, A.P. Zwane, Water Supply and Sanitation, Encyclopedia of Health Economics, Elsevier, Amsterdam, (2014) pp. 477–482.
  8. M.L. Davis, Water and Wastewater Engineering: Design Principles and Practice, McGraw-Hill, New York, (2010) pp. 2–21.
  9. National Research Council, Water Reuse: Potential for Expanding the Nation’s Water Supply through Reuse of Municipal Wastewater, The National Academies Press, Washington DC, (2012) pp. 1–2.
  10. D.T. Trang, W. van Der Hoek, N.D. Tuan, P.D. Cam, V.H. Viet, D.D. Luu, F. Konradsen, A. Dalsgaard, Skin disease among farmers using wastewater in rice cultivation in Dinh, Vietnam, Trop. Med. Int. Health, 12 (2007) 51–58.
  11. R.J. Slack, in: J. Holden ed., Water Resources: An Integrated Approach, Routledge, Abingdon, (2014) pp. 223–263.
  12. S.B. Brahim, B. Gargouri, F. Marrakchi, M. Bouaziz, The effects of different irrigation treatments on olive mill wastewater, J. Agric. Food Chem., 64 (2016) 1223–1230.
  13. S.B. Al–Shammari, A.M. Shahalam, Effluent from an advanced wastewater treatment plant—an alternate source of non-potable water for Kuwait, Desalination, (2006) pp. 196, 215–220.
  14. M. Qadir, D. Wichelns, L. Raschid–Sally, P.G. McCornick, P. Drechsel, A. Bahri, P.S. Minhas, The challenge of wastewater irrigation in developing countries, Agric. Water Manage., 97 (2010) 561–568.
  15. H. Bozkurt, M.C.M. van Loosdrecht, K.V. Gernaey, G. Sin, Optimal WTP process selection for treatment of domestic wastewater: a realistic full-scale retrofitting study, Chem. Eng. J., 286 (2016) 447–458.
  16. M.A. Massoud, A. Tarhini, J.A. Nasr, Decentralized approaches to wastewater treatment and management: Applicability in developing countries, J. Environ. Manage., 90 (2009) 652–659.
  17. A.N. Angelakis, M.H.F. Marecos Do Monte, L. Bontoux, T. Asano, Review paper: The status of wastewater reuse practice in Mediterranean basin: Need for guidelines, Water Res., 33 (1999) 2201–2217.
  18. G. Centi, P. Ciambelli, S. Perathoner, P. Russo, Enviromental catalysis: trends and outlook, Catal. Today, 75 (2002) 3–15.
  19. J. Li, H. He, C. Hu, J. Zhao, The abatement of major pollutants in air and water by environmental catalysis, Front. Environ. Sci. Eng., 7 (2013) 302–325.
  20. E. Nowicka, M. Sankar, Designing Pd-based supported bimetallic catalysts for environmental applications, J. Zhejiang Univ.–Science, A 19 (2018) 5–20.
  21. K.S. Siddiqi, A. Husen, Green synthesis, characterization and uses of palladium/platinum nanoparticles, Nanoscale Res. Lett., 11 (2016) 482.
  22. A. Alshammari, V.N. Kalevaru, A. Martin, Bimetallic catalysts containing gold and palladium for environmentally important reactions, Catalysts, 6 (2016) 97.
  23. B.P. Chaplin, M. Reinhard, W.F. Schneider, C. Schüth, J.R. Shapley, T.J. Strathmann, C.J. Werth, Critical review of Pd-based catalytic treatment of priority contaminants in water, Environ. Sci. Technol., 46 (2012) 3655–3670.
  24. B.A. Abdoulkader, B. Mohamed, M. Nabil, B. Alaoui-Sosse, C. Eric, A. Aleya, Wastewater use in agriculture in Djibouti: Effectiveness of sand filtration treatments and impact of wastewater irrigation on growth and yield of Panicum maximum, Ecol. Eng., 84 (2015) 607–614.
  25. E. Farahat, H.W. Linderholm, The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils, Sci. Total Environ., 1–7 (2015) 512–513.
  26. K.O. Medlicott, R. Bos, Public health measure: Safe use of wastewater for agriculture production, Encycl. Food Saf., 4 (2014) 107–114.
  27. L. Chaari, N. Elloumi, K. Gargouri, B. Bourouina, T. Michichi, M. Kallel, Evolution of several soil properties following amendment with olive mill wastewater, Desal. Water Treat., 52 (2014) 2180–2186.
  28. M.A. Mojid, G.C.L. Wyseure, Fertility response of potato to municipal wastewater and inorganic fertilizers, J. Plant Nutr., 37 (2014) 1997–2016.
  29. H.I. Tak, O.O. Babalola, M.H. Huyser, A. Inam, Urban wastewater irrigation and its effect on growth, photosynthesis and yield of chickpea under different doses of potassium, Soil Sci. Plant Nutr., 59 (2012) 156–167.
  30. D.A. Zema, G. Bombino, S. Andiloro, S.M. Zimbone, Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values, Agric. Water Manage., 115 (2012) 55–65.
  31. F. Zurita, M.A. Belmont, J. De Anda, J.R. White, Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries, Water Sci. Technol., 63 (2011) 645–659.
  32. P. Vasudevan, P. Griffin, A. Warren, A. Thapliyal, M. Tandon, Localized domestic wastewater treatment: Part 1–Constructed wetland (An overview), J. Sci. Ind. Res., 70 (2011) 583–594.
  33. H.K. Ahmed, H.A. Fawy, E.S. Abdel-Hady, Study of sewage sludge use in agriculture and its effect on plant and soil, Agric. Biol. J. North Am., 1(5) (2010) 1044–1049.
  34. U. Sonesson, H. Jonsson, B. Mattsson, Postconsumption sewage treatment in environmental system analysis of foods, J. Ind. Ecol., 8 (2004) 51–64.
  35. D. Sano, M. Amarasiri, A. Hata, T. Watanabe, H. Katayama, Risk management of viral infectious diseases in wastewater reclamation and reuse: Review, Environ. Int., 91 (2016) 220– 229.
  36. R.K. Kushwah, A. Bajpai, S. Malik, Wastewater quality studies of influent and effluent water at municipal wastewater treatment plant, Bhopal (India), J. Chem. Pharm. Res., 2 (2–3) (2011) 766–771.
  37. R. Iannelli, D. Giraldi, in: G.J. Levy, P. Fine, A. Bar-Tal, 1st ed., Treated Wastewater in Agriculture: Use and Impacts on the Soil Environment and Crops, Blackwell Publishing Ltd, West Sussex, (2011) pp. 3–50.
  38. Z.C. Zheng, T.X. Li, F.F. Zeng, X.Z. Zhang, H.Y. Yu, Y.D. Wang, T. Liu, Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater by Polygonum hydropiper, Agric. Water Manage., 117 (2013) 19–25.
  39. J. Cazenave, C. Bacchetta, A. Rossi, A. Ale, M. Campana, M.J. Parma, Deleterious effects of wastewater on the health status of fish: a field caging study, Ecol. Indic., 38 (2014) 104–112.
  40. S. Sauvé, M. Desrosiers, A review of what is an emerging contaminant, Chem. Cent. J., 8 (2014) 1–7.
  41. US EPA. Retrieved on October 26, 2016 from https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products.
  42. N. Milić, M. Milanović, N.G. Letić, M.T. Sekulić, J. Radonić, I. Mihajlović, M.J. Miloradov, Occurrence of antibiotics as emerging contaminant substances in aquatic environment, Int. J. Environ. Health Res., 23 (2013) 296–310.
  43. X. Li, W. Zheng, W.R. Kelly, Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons, Sci. Total Environ., 445 (2013) 22–28.
  44. S. Hamid, S. Bae, W. Lee, M.T. Amin, A.A. Alazba, Catalytic nitrate removal in continuous bimetallic Cu-Pd/nanoscale zerovalent iron system, Ind. Eng. Chem. Res., 54 (2015) 6247–6257.
  45. L. Kovalova, H. Siegrist, U. von Gunten, J. Eugster, M. Hagenbuch, A. Wittmer, R. Moser, C.S. McArdell, Elimination of miropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone and UV, Environ. Sci. Technol., 47 (2013) 7899–7908.
  46. D.P. Zagklis, P.G. Koutsoukos, C.A. Paraskeva, A combined coagulation/flocculation and membrane filtration process for the treatment of paint industry wastewater, Ind. Eng. Chem. Res., 51 (2012) 15456–15462.
  47. J. Rivas, A.R. Prazeres, F. Carvalho, F. Beltran, Treatment of cheese whey wastewater: Combined coagulation-flocculation and aerobic biodegradation, J. Agric. Food Chem., 58 (2010) 7871–7877.
  48. Y.C. Sharma, Uma, S.N. Upadhyay, Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir, Energy Fuels, 23 (2009) 2983–2988.
  49. S. Li, W. Wang, Y. Liu, W-X. Zhang, Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilotscale demonstration, Chem. Eng. J., 254 (2014) 115–123.
  50. L.B. Barber, S.H. Keefe, G.K. Brown, E.T. Furlong, J.L. Gray, D.W. Kolpin, M.T. Meyer, M.W. Sandstrom, S.D. Zaugg, Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams, Environ. Sci. Technol., 47 (2013) 2177–2188.
  51. A.R. Varela, C.M. Manaia, Human health implications of clinically relevant bacteria in wastewater habitats, Environ. Sci. Pollut. Res., 20 (2013) 3550–3569.
  52. A.P. Schwab, in: R. Lai ed., Encyclopedia of Soil Science, Volume 2, CRC Press, USA, (2006) 1334.
  53. M. Gavrilescu, K. Demnerova, J. Aamand, S. Agathos, F. Fava, Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation, New Biotechnol., 32 (2015) 147–156.
  54. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Adv., 4 (2014) 37003–37026.
  55. M. Tichonovas, E. Krugly, V. Racys, R. Hippler, V. Kauneliene, S. Inga, D. Martuzevicius, Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment, Chem. Eng. J., 229 (2013) 9–19.
  56. R.K. Gautam, V. Rawat, S. Banerjee, M.A. Sanroman, S. Soni, S.K. Singh, M.C. Chattopadhyaya, Synthesis of bimetallic Fe-Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water, J. Mol. Liq., 212 (2015) 227–236.
  57. K.G. Bhattacharyya, S.S. Gupta, G.K. Sarma, Kinetics, equilibrium isotherms and thermodynamics of adsorption of Congo red onto natural and acid-treated kaolinite and montmorillonite, Desal. Water Treat., 53 (2013) 530–542.
  58. S. Ghorai, A.K. Sarkar, A.B. Panda, S. Pal, Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent, Bioresour. Technol., 144 (2013) 485–491.
  59. A. Mittal, V. Thakur, J. Mittal, H. Vardhan, Process development for the removal of hazardous anionic azo dye Congo red from wastewater by using hen feather as potential adsorbent, Desal. Water Treat., 53 (2013) 227–237.
  60. X. Le, Z. Dong, Y. Liu, Z. Jin, T. Huy, M. Le, J. Ma, Palladium nanoparticles immobilized on core-shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions, J. Mater. Chem., A, 2 (2014) 19696–19706.
  61. F.A. Harraz, S.E. El-Hout, H.M. Killa, I.A. Ibrahim, Palladium nanoparticles stabilized by polyethylene glycol: Efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene, J. Catal., 286 (2012) 184–192.
  62. B.I. Podlovchenko, V.V. Kuznetsov, R.S. Batalov, Palladium catalyst modified with molybdenum bronze as a possible alternative to platinum in the methanol oxidation reaction, J. Solid State Electrochem., 20 (2016) 589–595.
  63. O.V. Borisov, D.M. Coleman, K.A. Oudsema, R.O.C. Ill, Determination of platinum, palladium, rhodium and titanium in automotive catalytic converters using inductively coupled plasma mass spectrometry with liquid nebulization, J. Anal. At. Spectrom., 12 (1997) 239–246.
  64. S. Czerczak, J.P. Gromiec, A. Palaszewska-Tkacz, A. Świdwińska-Gajewska, in: E. Bingham, B. Cohrssen, 6th ed., Patty’s Industrial Hygiene and Toxicology, John Wiley & Sons Inc., New York, 2012, 653–768.
  65. B.D. Adams, A. Chen, The role of palladium in a hydrogen economy, Mater. Today, 14 (2011) 282–289.
  66. A. Pundt, M. Suleiman, C. Bähtz, M.T. Reetz, R. Kirchheim, N.M. Jisrawi, Hydrogen and Pd-clusters, Mater. Sci. Eng., 108 (2004) 19–23.
  67. M. Suleiman, N.M. Jisrawi, O. Dankert, M.T. Reetz, C. Bähtz, R. Kirchheim, A. Pundt, Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters, J. Alloys Compd., 356 (2003) 644–648.
  68. I.O. Costilla, M.D. Sánchez, C.E. Gigola, Palladium nanoparticle’s surface structure and morphology effect on the catalytic activity for dry reforming of methane, Appl. Catal., A 478 (2014) 38–44.
  69. A.S. Barnard, Mapping the shape and phase of palladium nanocatalysts, Catal. Sci. Technol., 2 (2012) 1485–1492.
  70. J. Yang, C. Tian, L. Wang, H. Fu, An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation, J. Mater. Chem., 21 (2011) 3384–3390.
  71. D. Guo, H. Li, High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes, J. Colloid Interface Sci., 286 (2005) 274–279.
  72. L. Graham, G. Collins, J.D. Holmes, R.D. Tilley, Synthesis and catalytic properties of highly branched palladium nanostructures using seeded growth, Nanoscale, 8 (2016) 2867–2874.
  73. J. Watt, S. Cheong, M.F. Toney, B. Ingham, J. Cookson, P.T. Bishop, R.D. Tilley, Ultrafast growth of highly branched palladium nanostructures for catalysis, ACS Nano, 4 (2009) 396–402.
  74. G. Strukul, R. Gavagnin, F. Pinna, E. Modaferri, S. Perathoner, G. Centi, M. Marella, M. Tomaselli, Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: from powders to membranes, Catal. Today, 55 (2000) 139–149.
  75. M.B. Fernandez, J.F. Sanchez, G.M. Tonetto, D.E. Damiani, Hydrogenation of sunflower oil over different palladium supported catalysts, Chem. Eng. J., 155 (2009) 941–949.
  76. M.R.A. Arcanjo, I.J. Silva Jr., E. Rodríguez-Castellón, A. Infantes- Molina, R.S. Vieira, Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst, Catal. Today, 279 (2017) 317–326.
  77. S. Chen, L. Attanatho, T. Mochizuki, Y. Abe, M. Toba, Y. Yoshimura, C. Kumpidet, P. Somwonhsa, S. Lao-ubol, Upgrading of palm biodiesel fuel over supported palladium catalysts, C. R. Chim., 19 (2016) 1166–1173.
  78. B. Hu, W. Deng, R. Li, Q. Zhang, Y. Wang, F. Delplanque-Janssens, D. Paul, F. Desmedt, P. Miquel, Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, J. Catal., 319 (2014) 15–26.
  79. M.M. Dell’Anna, S. Intini, G. Romanazzi, A. Rizzuti, C. Leonelli, F. Piccinni, P. Mastrorilli, Polymer supported palladium nanocrystals as efficient and recyclable catalyst for the reduction of nitroarenes to anilines under mild conditions in water, J. Mol. Catal. A, 395 (2014) 307–314.
  80. S. Wang, Y. Cui, L. Lan, Z. Shi, M. Zhao, M. Gong, R. Fang, S. Chen, Y. Chen, A new monolithic Pt-Pd-Rh motorcycle exhaust catalyst to meet future emission standards, Chin. J. Catal., 35 (2014) 1482–1491.
  81. E. Diaz, A.M. Polo, A.F. Mohedano, J.A. Casas, J.J. Rodriguez, On the biodegradability of nitrophenols and their reaction products by catalytic hydrogenation, J. Chem. Technol. Biotechnol., 87 (2012) 1263–1269.
  82. E. Díaz, A.F. Mohedano, L. Calvo, M.A. Gilarranz, J.A. Casas, J.J. Rodríguez, Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts, Chem. Eng. J., 131 (2007) 65–71.
  83. B. Zhu, T. Lim, Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration, Environ. Sci. Technol., 41 (2007) 7523–7529.
  84. L. Calvo, A.F. Mohedano, J.A. Casas, M.A., Gilarranz, J.J. Rodríguez, Treatment of chlorophenols-bearing wastewaters through hydrodechlorination using Pd/activated carbon catalysts, Carbon, 42 (2004) 1377–1381.
  85. F. Deganello, L.F. Liotta, A. Macaluso, A.M. Venezia, G. Deganello, Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd-Cu catalysts, Appl. Catal., B 24 (2000) 265–273.
  86. O.M. Ilinitch, L.V. Nosova, V.V. Gorodetskii, V.P. Ivanov, S.N. Trukhan, E.N. Gribov, S.V. Bogdanov, F.P. Cuperus, Catalytic reduction of nitrate and nitrite ions by hydrogen: investigation of the reaction mechanism over Pd and Pd-Cu catalysts, J. Mol. Catal. A: Chem., 158 (2000) 237–249.
  87. G.V. Lowry, M. Reinhard, Hydrodehalogenation of 1- to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas, Environ. Sci. Technol., 33 (1999) 1905–1910.
  88. A. Pintar, G. Berčič, J. Levec, Catalytic liquid phase nitrite reduction: Kinetics and catalyst deactivation, AIChE J., 44 (1998) 2280–2292.
  89. D.P. Siantar, C.G. Schreier, C. Chou, M. Reinhard, Treatment of 1, 2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts, Water Res., 30 (1996) 2315–2322.
  90. S. Hörold, K.D. Vorlop, T. Tacke, M. Sell, Development of catalysts for a selective nitrate and nitrite removal from drinking water, Catal. Today, 17 (1993) 21–30.
  91. J.B. Hoke, G.A. Gramiccioni, E.N. Balko, Catalytic hydrodechlorination of chlorophenols, Appl. Catal., B, 1 (1992) 285–296.
  92. S. Kovenklioglu, Z. Cao, D. Shah, R.J. Farrauto, E.N. Balko, Direct catalytic hydrodechlorination of toxic organics in wastewater, AIChE J., 38 (1992) 1003–1012.
  93. N. Jadbabaei, T. Ye, D. Shuai, H. Zhang, Development of palladium- resin composites for catalytic hydrodechlorination of 4-chlorophenol, Appl. Catal., B, 205 (2017) 576–586.
  94. Z. Gao, Y. Zhang, D. Li, C.J. Werth, Y. Zhang, X. Zhou, Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction, J. Hazard. Mater., 286 (2015) 425–431.
  95. Y. Marco, E. García-Bordeje, C. Franch, A.E. Palomares, T. Yuranova, L. Kiwi-Minsker, Bromate catalytic reduction in continuous mode using metal catalysts supported on monoliths coated with carbon nanofibers, Chem. Eng. J., 230 (2013) 605–611.
  96. H. Conrad, G. Ertl, E. Latta, Adsorption of hydrogen on palladium single crystal surfaces, Surf. Sci., 41 (1974) 435–446.
  97. H. Nakatsuji, M. Hada, Interaction of a hydrogen molecule with palladium, J. Am. Chem. Soc., 107 (1985) 8264–8266.
  98. O.S.G.P. Soares, C.M.A.S. Freitas, A.M. Fonseca, J.J.M. Órfão, M.F.R. Pereira, I.C. Neves, Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite, Chem. Eng. J., 291 (2016) 199–205.
  99. H. Chen, P. Zhang, W. Tan, F. Jiang, R. Tang, Palladium supported on amino functionalized magnetic MCM-41 for catalytic hydrogenation of aqueous bromate, RSC Adv., 4 (2014) 38743–38749.
  100. A.E. Palomares, C. Franch, T. Yuranova, L. Kiwi-Minsker, E. García-Bordeje, S. Derrouiche, The use of Pd catalysts on carbon- based structured materials for the catalytic hydrogenation of bromates in different types of water, Appl. Catal., B 146 (2014) 186–191.
  101. D. Kubička, J. Horáček, M. Setnička, R. Bulánek, A. Zukal, I. Kubičková, Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides, Appl. Catal., B, 145 (2014) 101–107.
  102. C.M.A.S. Freitas, O.S.G.P. Soares, J.J.M. Órfão, A.M. Fonseca, M.F.R. Pereira, I.C. Neves, Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts, Green Chem., 17 (2015) 4247–4254.
  103. A. Śrębowata, K. Tarach, V. Girman, K. Góra-Marek, Catalytic removal of trichloroethylene from water over palladium loaded microporous and hierarchical zeolites, Appl. Catal., B 181 (2016) 550–560.
  104. H. Shin, S. Jung, S. Bae, W. Lee, H. Kim, Nitrite reduction mechanism on a Pd surface, Environ. Sci. Technol., 48 (2014) 12768–12774.
  105. Y. Zhao, N.K. Rao, L. Lefferts, Adsorbed species on Pd catalyst during nitrite hydrogenation approaching complete conversion, J. Catal., 337 (2016) 102–110.
  106. H. Chen, Z. Xu, H. Wan, J. Zheng, D. Yin, S. Zheng, Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts, Appl. Catal., B, 96 (2010) 307–313.
  107. Y. Wang, J. Liu, P. Wang, C.J. Werth, T.J. Strathmann, Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants, ACS Catal., 4 (2014) 3551–3559.
  108. W. Chang, H. Kim, G.Y. Lee, B.J. Ahn, Catalytic hydrodechlorination reaction of chlorophenols by Pd nanoparticles supported on graphene, Res. Chem. Intermed., 42 (2016) 71–82.
  109. T. Ye, D.P. Durkin, M. Hu, X. Wang, N.A. Banek, M.J. Wagner, D. Shuai, Enhancement of nitrite reduction kinetics on electrospun Pd-carbon nanomaterial catalysts for water purification, ACS Appl. Mater. Interfaces, 8 (2016) 17739–17744.
  110. C. Neyertz, F.A. Marchesini, A. Boix, E. Miró, C.A. Querini, catalytic reduction of nitrate in water: promoted palladium catalysts supported in resin, Appl. Catal., A 372 (2010) 40–47.
  111. C. Xia, Y. Liu, S. Zhou, C. Yang, S. Liu, J. Xu, J. Yu, J. Chen, X. Liang, The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: A promising approach to practical use in wastewater, J. Hazard. Mater., 169 (2009) 1029–1033.
  112. Y. Zhou, O.G. Apul, T. Karanfill, Adsorption of halogenated aliphatic contaminants by graphene nanomaterials, Water Res., 79 (2015) 57–67.
  113. H.M. Roy, C.M. Wai, T. Yuan, J. Kim, W.D. Marshall, Catalytic hyrodechlorination of chlorophenols in aqueous solution under mild conditions, Appl. Catal., A 271 (2004) 137–143.
  114. L. Li, L. Gong, Y. Wang, J. Zhang, Y. Mu, H. Yu, Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles, Water Res., 98 (2016) 235–241.
  115. T. Vincent, S. Spinelli, E. Guibal, Chitosan-supported palladium catalyst. II. Chlorophenol dehalogenation, Ind. Eng. Chem. Res., 42 (2003) 5968–5976.