References

  1. C. Orha, F. Manea, A. Pop, C. Bandas, C. Lazau, TiO2-nanostructured carbon composite sorbent/photocatalyst for humic acid removal from water, Desal. Water Treat., 57 (2016) 14178–14187.
  2. T. Ahmed, S. Imdad, K. Yaldram, N.M. Butt, A. Pervez, Emerging nanotechnology-based methods for water purification: a review, Desal. Water Treat., 52 (2014) 4089–4101.
  3. A.E. Bayat, R. Junin, M.N. Derahman, A.A. Samad, TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions, Chemosphere, 134 (2015) 7–15.
  4. A.E. Bayat, R. Junin, S. Shamshirband, W.T. Chong, Transport and retention ofengineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks, Sci. Rep., 5 (2015) 14264.
  5. S. Khan, Z. Dan, Y. Mengling, Y. Yang, H. Haiyan, J. Hao, Isotherms, kinetics and thermodynamic studies of adsorption of Ni and Cu by modification of Al2O3 nanoparticles with natural organic matter, Fullerenes Nanotubes Carbon Nanostruct., 26 (2018) 158–167.
  6. M. Shahid, A. McDonagh, J.H. Kim, H.K. Shon, Magnetised titanium dioxide (TiO2) for water purification: preparation, characterisation and application, Desal. Water Treat., 54 (2014) 979–1002.
  7. Z. Ma, X. Yin, X. Ji, J. Yue, L. Zhang, J. Qin, S. Valiyaveettil, A. Adin, Evaluation and removal of emerging nanoparticle contaminants in water treatment: a review, Desal. Water Treat., 57 (2016) 11221–11232.
  8. J. Lu, D. Liu, X. Yang, H. Liu, S. Liu, H. Tang, Y. Zhao, F. Cui, Sedimentation of TiO2 nanoparticles in aqueous solutions: influence of pH, ionic strength, and adsorption of humic acid, Desal. Water Treat., 57 (2016) 18817–18824.
  9. M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol., 40 (2006) 4336–4345.
  10. G. Chen, X. Liu, C. Su, Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionicstrength conditions: measurements and mechanisms, Langmuir, 27 (2011) 5393–5402.
  11. J. Fang, X.Q. Shan, B. Wen, J.M. Lin, G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environ. Pollut., 157 (2009) 1101–1109.
  12. D.J. Wang, M. Paradelo, S.A. Bradford, W.J.G.M. Peijnenburg, L.Y. Chu, D.M. Zhou, Facilitated transport of Cu with hydroxy apatite nanoparticles in saturated sand: effects of solution ionic strength and composition, Water Res., 45 (2011) 5905–5915.
  13. J.N. Ryan,M. Elimelech, Colloid mobilization and transport in groundwater, Colloids Surf. A, 107 (1996) 1–56.
  14. M. Elimelech, C.R. O’Melia, Effect of particle size on collision efficiency in deposition of Brownian particles with electrostatic energy barriers, Langmuir, 6 (1990) 1153–1163.
  15. R. Kretzschmar, H. Sticher, Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals, Environ. Sci. Technol., 31 (1997) 3497–3504.
  16. G. Chen, M. Flury, J.B. Harsh, Colloid-facilitated transport of cesium in variably saturated Hanford sediments, Environ. Sci. Technol., 39 (2005) 3435–3442.
  17. X. Liu, M. Wazne, C. Christodoulatos, K.L. Jasinkiewicz, Aggregation and deposition behavior of boron nanoparticles in porous media, J. Colloid Interface Sci., 330 (2009) 90–96.
  18. J. Zhuang, J. Qi, Y. Jin, Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property, Environ. Sci. Technol., 39 (2005) 7853–7859.
  19. K.A.D. Guzman, M.P. Finnegan, J.F Banfield, Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol., 40 (2006) 7688–7693.
  20. H.F. Lecoanet, M.R. Wiesner, Velocity effects on fullerene and oxide nanoparticles deposition on porous media, Environ. Sci. Technol., 16 (2004) 4377–4382.
  21. H.F. Lecoanet, J. Bottero, M.R. Wiesner, Laboratory assessment of the mobility of nanomaterials in porous media, Environ. Sci. Technol., 38 (2004) 5164–5169.
  22. L.W. Zhang, Q.G. Huang, Environmental fate, transport, and transformation of carbon nanoparticles, in: P. Ripp, S. Henry, B. Theodore (Eds.), Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats around Us. American Chemical Society, Chapter 4. 2012, pp. 69–101.
  23. L.W. DeJonge, C. Kjaergaard, P. Moldrup, Colloids and colloid- facilitated transport of contaminants in soils: an introduction, Vadose Zone J., 3 (2004) 321–325.
  24. J. Simunek, C.M. He, L.P. Pang, S.A. Bradford, Colloid facilitated solute transport in variably saturated porous media: numerical model and experimental verification, Vadose Zone J., 5 (2006) 1035–1047.
  25. L.L. Zhang, L.L. Wang, P. Zhang, A.T. Kan, W. Chen, M.B. Tomson, Facilitated transport of 2, 20, 5, 50-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns, Environ. Sci. Technol., 45 (2011) 1341–1348.
  26. J. Fang, X.Q. Shan, B. Wen, J.M. Lin, G. Owens, S.R. Zhou, Transport of copper as affected by titania nanoparticles in soil columns, Environ. Pollut., 159 (2011) 1248–1256.
  27. W. Tungittiplakorn, L.W. Lion, C. Cohen, J.Y. Kim, Engineered polymeric nanoparticles for soil remediation, Environ. Sci. Technol., 38 (2004) 1605–1610.
  28. T. Hofmann, F. von der Kammer, Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media, Environ. Pollut., 157 (2009) 1117–1126.
  29. R. Kretzschmar, K. Barmettler, D. Grolimund, Y. Yan, M. Borkovec, H. Sticher, Experimental determination of colloid deposition rates and collision efficiencies in natural porous media, Water Resour. Res., 33 (1997) 1129–1137.
  30. N. Tufenkji, M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media, Environ. Sci. Technol., 38 (2004) 529–536.
  31. K.M. Yao, M.T. Habibian, C.R. O’Melia, Water and waste water filtration. Concepts and applications, Environ. Sci. Technol., 5 (1971) 1105–1112.
  32. D.W. Nelson, L.E. Sommers, Total carbon, organic carbon and organic matter, in: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnson, M.E. Sumne (Eds.), Methods of Soil Analysis. Part 3 — Chemical Methods, Soil Sci. Soc. Am. J., Madison, WI, 1996, pp. 961–1010.
  33. A.R. Morrisson, J.S. Park, B.L. Sharp, Application of high-performance size exclusion liquid chromatography to the study of copper speciation in waters extracted from sewage sludge treated soils, Analyst., 115 (1990) 1429–1433.
  34. K. Shamshad, Ş. Hatice, Experimental investigation of stability and transport of TiO2 nanoparticles in real soil columns, Desal. Water Treat., 57 (2016) 26196–26203.
  35. H. Malte, The DLVO theory in microbial adhesion, Colloids Surf. B, 14 (1999) 105–119.
  36. P. Yi, K.L. Chen, Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes, Langmuir, 27 (2011) 3588–3599.
  37. D. Bouchard, W. Zhang, T. Powell, Rattanaudompol, U. Rattanaudompol, Aggregation kinetics and transport of single- walled carbon nanotubes at low surfactant concentrations, Environ. Sci. Technol., 46 (2012) 4458–4465.
  38. S.A. Bradford, S. Torkzaban, S.L. Walker, Coupling of physical and chemical mechanisms of colloid straining in saturated porous media, Water Res., 41 (2007) 3012–3024.
  39. C. Ko, M. Elimelech, The ‘‘shadow effect’’ in colloid transport and deposition dynamics in granular porous media: measurements and mechanisms, Environ. Sci. Technol., 34 (2000) 3681–3689.
  40. J. Fang, X. Mei-jia, W. Deng-jun, B. Wen, H. Jing-yi, Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH, Water Res., 47 (2013) 1399–1408.
  41. K. Shamshad, W. Yaoguo, Z. Xiaoyan, H. Sihai, L. Tao, F. Yilin, L. Qiuge, Influence of dissolved organic matter from corn straw on Zn and Cu sorption to Chinese loess, Toxicol. Environ. Chem., 95 (2013) 1318–1327.
  42. Y.H. Su, Y.G. Zhu, G.Y. Sheng, C.T. Chiou, Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: silica and alumina, Environ. Sci. Technol., 40 (2006) 6949–6954.
  43. F. Celardin, C. Trouillet, R. Tisiot, pH dependence of copper adsorption in vineyard soils of Geneva, Environ. Chem. Lett., 1 (2004) 225–227.
  44. A.D. Karathanasis, Subsurface migration of copper and zinc mediated by soil colloids, Soil Sci. Soc. Am. J., 63 (1999) 830– 838.
  45. J. Zhuang, M. Flury, Y. Jin, Colloid-facilitated Cs transport through water saturated Hanford sediment and Ottawa sand, Environ. Sci. Technol., 37 (2003) 4905–4911.
  46. X. Cheng, A.T. Kan, M.B. Tomson, Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport, J. Mater. Res., 20 (2005) 3244–3254.