References
- T.T. Bui, G. Giovanoulis, A.P. Cousins, J. Magner, I.T. Cousins, C.
A. de Wit, Human exposure, hazard and risk of alternative plasticizers
to phthalate esters, Sci. Total Environ., 541 (2016) 451–467.
- S. Singh, S.S.-L., Li, Phthalates: Toxico genomics and inferred
human diseases, Genomics, 97 (2011) 148–157.
- M. Rahman, C.S. Brazel, The plasticizer market: an assessment
of traditional plasticizers and research trends to meet new
challenges, Prog. Polym. Sci., 29 (2004) 1223–1248.
- M.G.A. Vieira, M.A. da Silva, L.O. dos Santos, M.M. Beppu,
Natural-based plasticizers and biopolymer films: A review,
Eur. Polym. J., 47 (2011) 254–263.
- Z. Wu, Y. Nie, W. Chen, L. Wu, P. Chen, M. Lu, F. Yu, J. Ji, Mass
transfer and reaction kinetics of soybean oil epoxidation in a
formic acid-autocatalyzed reaction system, Can. J. Chem. Eng.,
94 (2016) 1576–1582.
- Z. Wu, T. Zheng, L. Wu, H. Lou, Q. Xie, M. Lu, L. Zhang, Y. Nie,
J. Ji, Novel reactor for exothermic heterogeneous reaction system:
Intensification of mass and heat transfer and application
to vegetable oil epoxidation, Ind. Eng. Chem. Res., 56 (2017)
5231–5238.
- Z. Wu, J. Fang, Q. Xie, T. Zheng, L. Wu, M. Lu, L. Zhang, Y.
Nie, J. Ji, Macroscopic kinetics modelling of liquid-liquid reaction
system: Epoxidation of fatty acid methyl esters, Ind. Crop.
Prod., 122 (2018) 266–276.
- W.T. You, F. Feng, Z.L. Xu, W. L, Study of using fenton
reagent-membrane bioreactor on the epoxy plasticizers wastewater
treatment, Water Purif. Technol., 28 (2009) 61–64.
- W.R. Zhao, J.F. Zhang, S.J.J. Shen, The reuse method of epoxy
methyl ester wastewater, 2008 CN101200423.
- O. Pezoti, A.L. Cazetta, K.C. Bedin, A.C. Martins, T.L. Silva,
O.O. Santos Junior, J.V. Visentainer, V.C. Almeida, NaOH–
activated carbon of high surface area produced from guava
seeds as a high-efficiency adsorbent for amoxicillin removal:
Kinetic, isotherm and thermodynamic studies, Chem. Eng. J.,
288 (2016) 778–788.
- Y. Zheng, Q. Li, C. Yuan, Q. Tao, Y. Zhao, G. Zhang, J. Liu, G. Qi,
Thermodynamic analysis of high-pressure methane adsorption
on coal-based activated carbon, Fuel, 230 (2018) 172–184.
- M. Morita, M. Higuchi, I. Sakata, Binding of heavy metal ions
by chemically modified woods, J. Appl. Polym. Sci., 34 (1987)
1013–1023.
- K. Santhy, P. Selvapathy, Removal of reactive dyes from wastewater
by adsorption on coir pith activated carbon, Bioresour.
Technol., 97 (2006) 1329–1336.
- P.A. Brown, S.A. Gill, S.J. Allen, Metal removal from wastewater
using peat, Water Res., 34 (2000) 3907–3916.
- O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors
for activated carbon production—A review, Renew. Sust.
Energ. Rev., 11 (2007) 1966–2005.
- A.H. Jawad, R.A. Rashid, K. Ismail, S. Sabar, High surface area
mesoporous activated carbon developed from coconut leaf by
chemical activation with H3PO4 for adsorption of methylene
blue, Desal. Water Treat., 74 (2017) 326–335.
- A.H. Jawad, N.F.H. Mamat, M.F. Abdullah, K. Ismail, Adsorption
of methylene blue onto acid–treated mango peels: kinetic,
equilibrium and thermodynamic study, Desal. Water Treat., 59
(2017) 210–219.
- A.H. Jawad, R.A. Rashid , M.A.M. Ishak, L.D. Wilson, Adsorption
of methylene blue onto activated carbon developed from
biomass waste by H2SO4 activation: kinetic, equilibrium and
thermodynamic studies, Desal. Water Treat., 52 (2016) 25194–
25206.
- F. Rodriguez-Reinoso, M. Molina-Sabio, M.A. Munecas, Effect
of microporosity and oxygen surface groups of activated carbon
in the adsorption of molecules of different polarity, J.
Phys. Chem., 96 (1992) 2707–2713.
- A-N.A. El-Hendawy, Influence of HNO3 oxidation on the structure
and adsorptive properties of corncob-based activated carbon,
Carbon, 41 (2003) 713–722.
- A.H. Jawad, M. Azlan, M. Ishak, A.M. Farhan, K. Ismail,
Response surface methodology approach for optimization of
color removal and COD reduction of methylene blue using
microwave-induced NaOH activated carbon from biomass
waste, Desal. Water Treat., 62 (2017) 208–220.
- H.M. Boehm, Some aspects of the surface chemistry of carbon
blacks and other carbons, Carbon, 32 (1994) 759–769.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids, J. Am. Chem. Soc., 38(11) (1996) 2221–2295.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–471.
- V. Vimonses, S.M. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic
study and equilibrium isotherm analysis of Congo Red
adsorption by clay materials, Che. Eng. J., 148 (2009) 354–364.
- A. Casas, M.J. Ramos, A. Perez, Adsorption equilibrium and
kinetics of methyl acetate/methanol and methyl acetate/water
mixtures on zeolite 5A, Chem. Eng. J., 220 (2013) 337–342.
- R.P. Han, J.J. Zhang, P. Han, Y.F. Wang, Z.H. Zhao, M.S. Tang,
Study of equilibrium, kinetic and thermodynamic parameters
about methylene blue adsorption onto natural zeolite, Chem.
Eng. J., 145 (2009) 496–504.
- S. Lagergren, Zur theorie der sogenannten adsorption geloster
stoff, Kung Seven. Veten. Hand, 24 (1898) 1–39.
- Y.S. Ho, G. Mckay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- F.J. Garcia-Mateos, R. Ruiz-Rosas, M.D. Marques, L.M.
Cotoruelo, J. Rodrigurz-Mirasol, T. Cordero, Removal of paracetamol
on biomass-derived activated carbon: Modeling the
fixed bed breakthrough curves using batch adsorption experiments,
Chem. Eng. J., 279 (2015) 18–30.
- Hayward, D.O. Trapnell, B.M.W. Chemisorption, 2rd ed.; Butterworth:
London, 1964.
- A. Katsigiannis, C. Noutsopoulos, J. Mantziaras, M. Gioldasi,
Removal of emerging pollutants through granular activated
carbon, Chem. Eng. J., 280 (2015) 49–57.