References

  1. A. Sweity, Y. Oren, Z. Ronen, M. Herzberg, The influence of antiscalants on biofouling of RO membranes in seawater desalination, Water Res., 47 (2013) 3389–3398.
  2. M. Bystrianský, O. Nir, M. Šír, Z. Honzajková, R. Vurm, P. Hrychová, A. Bervic, B. van der Bruggen, The presence of ferric iron promotes calcium sulphate scaling in reverse osmosis processes, Desalination, 393 (2016).
  3. O. Nir, O. Lahav, Coupling mass transport and chemical equilibrium models for improving the prediction of SWRO permeate boron concentrations, Desalination, 310 (2013), 87–92.
  4. O. Nir, O. Lahav, Modeling weak acids’ reactive transport in reverse osmosis processes: A general framework and case studies for SWRO, Desalination, 343 (2014) 147–153.
  5. J. López, M. Reig, A. Yaroshchuk, E. Licon, O. Gibert, J.L. Cortina, Experimental and theoretical study of nanofiltration of weak electrolytes: SO42–/HSO4/H+ system, J. Membr. Sci., 550 (2018) 389–398.
  6. T. Waly, M.D. Kennedy, G.-J. Witkamp, G. Amy, J.C. Schippers, Predicting and measurement of pH of seawater reverse osmosis concentrates, Desalination, 280 (2011) 27–32.
  7. O. Nir, N.F. Bishop, O. Lahav, V. Freger, Modeling pH variation in reverse osmosis, Water Res., 87 (2015) 328–335.
  8. K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem., 77 (1973) 268–277.
  9. G.F. Huff, Use of simulated evaporation to assess the potential for scale formation during reverse osmosis desalination, Desalination, 160 (2004) 285–292.
  10. O. Nir, L. Ophek, O. Lahav, Acid-base dynamics in seawater reverse osmosis: experimental evaluation of a reactive-transport algorithm, Environ. Sci. Water Res. Technol., (2015).
  11. S.R. Charlton, D.L. Parkhurst, Modules based on the geochemical model PHREEQC for use in scripting and programming languages, Comput. Geosci., 37 (2011) 1653–1663.
  12. C.A.J. Appelo, Principles, caveats and improvements in databases for calculating hydro geochemical reactions in saline waters from 0 to 200°C and 1 to 1000 atm, Appl. Geochemistry, 55 (2015) 62–71.
  13. A. Vengosh, E. Rosenthal, Saline groundwater in Israel: its bearing on the water crisis in the country, J. Hydrol., 156 (1994) 389–430.
  14. E. Koutsakos, G. Delaisse, W. van der Wal, Successful antiscalant field trial - optimization at higher pH and seawater temperature, Larnaca desalination plant, Desal. Water Treat., 13 (2010) 217–225.
  15. O. Nir, E. Marvin, O. Lahav, Accurate and self-consistent procedure for determining pH in seawater desalination brines and its manifestation in reverse osmosis modeling, Water Res., 64 (2014) 187–195.
  16. F.J. Millero, S. Sotolongo, M. Izaguirre, The oxidation kinetics of Fe(II) in seawater, Geochim. Cosmochim. Acta, 51 (1987) 793–801.
  17. K.L. Petersen, A. Paytan, E. Rahav, O. Levy, J. Silverman, O. Barzel, D. Potts, E. Bar-Zeev, Impact of brine and antiscalants on reef-building corals in the Gulf of Aqaba – Potential effects from desalination plants, Water Res., 144 (2018) 183–191.
  18. G. Oron, L. Gillerman, Y. Manor, S. Appelbaum, R. Bernstein, A. Bick, Surrogating membrane resistance variables for assessing reverse osmosis fouling during wastewater upgrading for unrestricted use, J. Membr. Sci., 520 (2016) 990–997.
  19. C. Niewersch, A.L. Battaglia Bloch, S. Yüce, T. Melin, M. Wessling, Nanofiltration for the recovery of phosphorus - Development of a mass transport model, Desalination, 346 (2014) 70–78.
  20. O. Nir, R. Sengpiel, M. Wessling, Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes, Chem. Eng. J., 346 (2018) 640–648.