References
- R.L. Mcginnis, M. Elimelech, Global challenges in energy
and water supply: the promise of engineered osmosis, 42(23)
(2008) 8625–8629.
- C.J. Gabelich, T.D. Tran, I.H. “Mel” Suffet, Electrosorption of
inorganic salts from aqueous solution using carbon aerogels,
Environ. Sci. Technol., (2002) 3010–3019.
- O.A. Hamed, Overview of hybrid desalination systems - Current
status and future prospects, Desalination, 186 (2005) 207–
214.
- Q. Schiermeier, Water: Purification with a pinch of salt, Nature,
452 (2008) 260–261.
- B. Jia, W. Zhang, Preparation and application of electrodes in
capacitive deionization (CDI): a state-of-art review, Nanoscale
Res. Lett., 11 (2016) 64.
- I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach,
The effect of the flow-regime, reversal of polarization, and
oxygen on the long term stability in capacitive de-ionization
processes, Electrochim. Acta., 153 (2015) 106–114.
- G. Tian, L. Liu, Q. Meng, B. Cao, Preparation and characterization
of cross-linked quaternised polyvinyl alcohol membrane/
activated carbon composite electrode for membrane capacitive
deionization, Desalination, 354 (2014) 107–115.
- T. Alencherry, N.A.R., S. Ghosh, J. Daniel, R. Venkataraghavan,
Effect of increasing electrical conductivity and hydrophilicity
on the electrosorption capacity of activated carbon electrodes
for capacitive deionization, Desalination, 415 (2017) 14–19.
- C. Kim, P. Srimuk, J. Lee, S. Fleischmann, M. Aslan, V. Presser,
Influence of pore structure and cell voltage of activated carbon
cloth as a versatile electrode material for capacitive deionization,
Carbon, 122 (2017) 329–335.
- X. Quan, Z. Fu, L. Yuan, M. Zhong, R. Mi, X. Yang, Y. Yi, C.
Wang, Capacitive deionization of NaCl solutions with ambient
pressure dried carbon aerogel microsphere electrodes, RSC
Adv., 7 (2017) 35875–35882.
- J. Lee, P. Srimuk, K. Aristizabal, C. Kim, S. Choudhury, Y.-C.
Nah, F. Mücklich, V. Presser, Pseudocapacitive desalination of
brackish water and seawater with vanadium-pentoxide-decorated
multiwalled carbon nanotubes, Chem. Sus. Chem., 10
(2017) 3611–3623.
- Y. Belaustegui, S. Zorita, F. Fernández-Carretero, A.
García-Luis, F. Pantò, S. Stelitano, P. Frontera, P. Antonucci,
Electro-spun graphene-enriched carbon fibres with high nitrogen-
contents for electrochemical water desalination, Desalination,
428 (2018) 40–49.
- Z.Y. Leong, G. Lu, H.Y. Yang, Three-dimensional graphene
oxide and polyvinyl alcohol composites as structured activated
carbons for capacitive desalination, Desalination, (2017)
in press.
- J. Li, B. Ji, R. Jiang, P. Zhang, N. Chen, G. Zhang, L. Qu, Hierarchical
hole-enhanced 3D graphene assembly for highly efficient
capacitive deionization, Carbon, 129 (2018) 95–103.
- Z.U. Khan, T. Yan, L. Shi, D. Zhang, Improved capacitive
deionization by using 3D intercalated graphene sheet–sphere
nanocomposite architectures, Environ. Sci. Nano, 5 (2018)
980–991.
- G. Divyapriya, K.K. Vijayakumar, I. Nambi, Development of a
novel graphene/Co3O4 composite for hybrid capacitive deionization
system, Desalination, (2018) in press.
- S. Porada, A. Shrivastava, P. Bukowska, P.M. Biesheuvel, K.C.
Smith, Nickel hexacyanoferrate electrodes for continuous cation
intercalation desalination of brackish water, Electrochim.
Acta., 255 (2017) 369–378.
- D.H. Nam, K.S. Choi, Bismuth as a new chloride-storage electrode
enabling the construction of a practical high capacity
desalination battery, J. Am. Chem. Soc., 139 (2017) 11055–11063.
- Z. Wang, T. Yan, G. Chen, L. Shi, D. Zhang, High salt removal
capacity of metal-organic gel derived porous carbon for capacitive
deionization, ACS Sustain. Chem. Eng., 5 (2017) 11637–
11644.
- Z. Wang, T. Yan, L. Shi, D. Zhang, In situ expanding pores of
dodecahedron-like carbon frameworks derived from MOFs
for enhanced capacitive deionization, ACS Appl. Mater. Interfaces.,
9 (2017) 15068–15078.
- T. Gao, F. Zhou, W. Ma, H. Li, Metal-organic-framework
derived carbon polyhedron and carbon nanotube hybrids as
electrode for electrochemical supercapacitor and capacitive
deionization, Electrochim. Acta., 263 (2018) 85–93.
- K.L. Yang, T.Y. Ying, S. Yiacoumi, C. Tsouris, E.S. Vittoratos,
Electrosorption of ions from aqueous solutions by carbon
aerogel: An electrical double-layer model, Langmuir, 17 (2001)
1961–1969.
- D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz,
Combined effect of nitrogen- and oxygen-containing functional
groups of microporous activated carbon on its electrochemical
performance in supercapacitors, Adv. Funct. Mater.,
19(3) (2009) 438-447.
- E. Pollak, I. Genish, G. Salitra, A. Soffer, L. Klein, D. Aurbach,
The dependence of the electronic conductivity of carbon
molecular sieve electrodes on their charging states, J. Phys.
Chem. B, 110(14) (2006) 7443–7448.
- A. Omosebi, X. Gao, J. Landon, K. Liu, Asymmetric electrode
configuration for enhanced membrane capacitive deionization,
ACS Appl. Mater. Interfaces., 6 (2014) 12640–12649.
- G. Tian, L. Liu, Q. Meng, B. Cao, Facile synthesis of laminated
graphene for advanced supercapacitor electrode material via
simultaneous reduction and N-doping, J. Power Sources, 274
(2015) 851–861.
- G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado, J.B.
Parra, C.O. Ania, N-doped monolithic carbon aerogel electrodes
with optimized features for the electrosorption of ions,
Carbon, 83 (2015) 262–274.
- X. Xu, Z. Sun, D.H.C. Chua, L. Pan, Novel nitrogen doped
graphene sponge with ultrahigh capacitive deionization performance,
Sci. Rep., 5 (2015) 1–9.
- Y. Liu, T. Chen, T. Lu, Z. Sun, D.H.C. Chua, L. Pan, Nitrogen-doped porous carbon spheres for highly efficient capacitive
deionization, Electrochim. Acta, 158 (2015) 403–409.
- S. Zhao, T. Yan, H. Wang, G. Chen, L. Huang, J. Zhang, L. Shi,
D. Zhang, High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization,
Appl. Surf. Sci., 369 (2016) 460–469.
- X. Gao, J. Landon, J.K. Neathery, K. Liu, Modification of
carbon xerogel electrodes for more efficient asymmetric
capacitive deionization, J. Electrochem. Soc., 160 (2013) E106–
E112.
- E. Avraham, M. Noked, I. Cohen, A. Soffer, D. Aurbach, The
dependence of the desalination performance in capacitive
deionization processes on the electrodes PZC, J. Electrochem.
Soc., 158 (2011) 168–173.
- H. Yoon, J. Lee, S. Kim, J. Yoon, Hybrid capacitive deionization
with Ag coated carbon composite electrode, Desalination, 422
(2017) 42–48.
- F. Zhou, T. Gao, M. Luo, H. Li, Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization
with ultrahigh desalination capacity, Chem. Eng. J., 343 (2018)
8–15.
- P.M. Biesheuvel, H.V.M. Hamelers, M.E. Suss, Theory of water
desalination by porous electrodes with immobile chemical
charge, Colloid Interf. Sci. Commun., 9 (2015) 1–5.
- X. Gao, A. Omosebi, J. Landon, K. Liu, Surface charge enhanced
carbon electrodes for stable and efficient capacitive deionization
using inverted adsorption–desorption behavior, Energy
Environ. Sci., 8 (2015) 897–909.
- X. Gao, A. Omosebi, J. Landon, K. Liu, Enhanced salt removal
in an inverted capacitive deionization cell using amine modified
microporous carbon cathodes, Environ. Sci. Technol., 49
(2015) 10920–10926.
- S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel,
Review on the science and technology of water desalination by
capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442.
- P.M. Biesheuvel, A. van der Wal, Membrane capacitive deionization,
J. Membr. Sci., 346 (2010) 256–262.
- M. Mossad, L. Zou, Evaluation of the salt removal efficiency of
capacitive deionisation : Kinetics , isotherms and thermodynamics,
Chem. Eng. J., 223 (2013) 704–713.
- Q.F. Deng, L. Liu, X.Z. Lin, G. Du, Y. Liu, Z.Y. Yuan, Synthesis
and CO2 capture properties of mesoporous carbon nitride
materials, Chem. Eng. J., 203 (2012) 63–70.
- G.-P. Hao, W.-C. Li, D. Qian, A.-H. Lu, Rapid synthesis of
nitrogen-doped porous carbon monolith for CO2 capture, Adv.
Mater., 22 (2010) 853–857.
- C.N.R. Rao, K. Gopalakrishnan, A. Govindaraj, Synthesis,
properties and applications of graphene doped with boron,
nitrogen and other elements, Nano Today, 9 (2014) 324–343.
- H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang,
J.W. Choi, Nitrogen-doped graphene for high-performance
ultracapacitors and the importance of nitrogen-doped sites at
basal planes, Nano Lett., 11 (2011) 2472–2477.
- W. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Sulfur-
containing activated carbons with greatly reduced content
of bottle neck pores for double-layer capacitors: a case study for
pseudocapacitance detection, Energy Environ. Sci., 6 (2013) 2465.
- Y. Wang, B. Zhang, M. Xu, X. He, Tunable ternary (P, S,
N)-doped graphene as an efficient electrocatalyst for oxygen
reduction reaction in an alkaline medium, RSC Adv., 5 (2015)
86746–86753.
- Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C.Q. Sun, L. Pan, Phosphorus-doped 3D carbon nanofiber aerogels derived from
bacterial-cellulose for highly-efficient capacitive deionization,
Carbon, 130 (2018) 377–383.
- L. Liu, X. Guo, R. Tallon, X. Huang, J. Chen, Highly porous
N-doped graphene nanosheets for rapid removal of heavy
metals from water by capacitive deionization, Chem. Commun.,
53 (2017) 881–884.
- X. Gu, Y. Yang, Y. Hu, M. Hu, J. Huang, C. Wang, Nitrogen-doped graphene composites as efficient electrodes with
enhanced capacitive deionization performance, RSC Adv. 4
(2014) 63189–63199. doi:10.1039/C4RA11468J.
- J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M.
Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger,
Recommendations for the characterization of porous solids,
Pure Appl. Chem., 66(8) (1994) 1739–1758.
- H. Bai, C. Li, G. Shi, Functional composite materials based on
chemically converted graphene, Adv. Mater., 23 (2011) 1089–
1115.
- C.T. Hsieh, H. Teng, Influence of oxygen treatment on electric
double-layer capacitance of activated carbon fabrics, Carbon,
40 (2002) 667–674.
- S.R.S. Prabaharan, R. Vimala, Z. Zainal, Nanostructured mesoporous
carbon as electrodes for supercapacitors, J. Power
Sources, 161 (2006) 730–736.
- M. Noked, E. Avraham, A. Soffer, D. Aurbach, The rate-determining
step of electroadsorption processes into nanoporous
carbon electrodes related to water desalination, J. Phys. Chem.
C, 113 (2009) 21319–21327.