References

  1. R.L. Mcginnis, M. Elimelech, Global challenges in energy and water supply: the promise of engineered osmosis, 42(23) (2008) 8625–8629.
  2. C.J. Gabelich, T.D. Tran, I.H. “Mel” Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., (2002) 3010–3019.
  3. O.A. Hamed, Overview of hybrid desalination systems - Current status and future prospects, Desalination, 186 (2005) 207– 214.
  4. Q. Schiermeier, Water: Purification with a pinch of salt, Nature, 452 (2008) 260–261.
  5. B. Jia, W. Zhang, Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review, Nanoscale Res. Lett., 11 (2016) 64.
  6. I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach, The effect of the flow-regime, reversal of polarization, and oxygen on the long term stability in capacitive de-ionization processes, Electrochim. Acta., 153 (2015) 106–114.
  7. G. Tian, L. Liu, Q. Meng, B. Cao, Preparation and characterization of cross-linked quaternised polyvinyl alcohol membrane/ activated carbon composite electrode for membrane capacitive deionization, Desalination, 354 (2014) 107–115.
  8. T. Alencherry, N.A.R., S. Ghosh, J. Daniel, R. Venkataraghavan, Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization, Desalination, 415 (2017) 14–19.
  9. C. Kim, P. Srimuk, J. Lee, S. Fleischmann, M. Aslan, V. Presser, Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 122 (2017) 329–335.
  10. X. Quan, Z. Fu, L. Yuan, M. Zhong, R. Mi, X. Yang, Y. Yi, C. Wang, Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes, RSC Adv., 7 (2017) 35875–35882.
  11. J. Lee, P. Srimuk, K. Aristizabal, C. Kim, S. Choudhury, Y.-C. Nah, F. Mücklich, V. Presser, Pseudocapacitive desalination of brackish water and seawater with vanadium-pentoxide-decorated multiwalled carbon nanotubes, Chem. Sus. Chem., 10 (2017) 3611–3623.
  12. Y. Belaustegui, S. Zorita, F. Fernández-Carretero, A. García-Luis, F. Pantò, S. Stelitano, P. Frontera, P. Antonucci, Electro-spun graphene-enriched carbon fibres with high nitrogen- contents for electrochemical water desalination, Desalination, 428 (2018) 40–49.
  13. Z.Y. Leong, G. Lu, H.Y. Yang, Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination, Desalination, (2017) in press.
  14. J. Li, B. Ji, R. Jiang, P. Zhang, N. Chen, G. Zhang, L. Qu, Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon, 129 (2018) 95–103.
  15. Z.U. Khan, T. Yan, L. Shi, D. Zhang, Improved capacitive deionization by using 3D intercalated graphene sheet–sphere nanocomposite architectures, Environ. Sci. Nano, 5 (2018) 980–991.
  16. G. Divyapriya, K.K. Vijayakumar, I. Nambi, Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system, Desalination, (2018) in press.
  17. S. Porada, A. Shrivastava, P. Bukowska, P.M. Biesheuvel, K.C. Smith, Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water, Electrochim. Acta., 255 (2017) 369–378.
  18. D.H. Nam, K.S. Choi, Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery, J. Am. Chem. Soc., 139 (2017) 11055–11063.
  19. Z. Wang, T. Yan, G. Chen, L. Shi, D. Zhang, High salt removal capacity of metal-organic gel derived porous carbon for capacitive deionization, ACS Sustain. Chem. Eng., 5 (2017) 11637– 11644.
  20. Z. Wang, T. Yan, L. Shi, D. Zhang, In situ expanding pores of dodecahedron-like carbon frameworks derived from MOFs for enhanced capacitive deionization, ACS Appl. Mater. Interfaces., 9 (2017) 15068–15078.
  21. T. Gao, F. Zhou, W. Ma, H. Li, Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization, Electrochim. Acta., 263 (2018) 85–93.
  22. K.L. Yang, T.Y. Ying, S. Yiacoumi, C. Tsouris, E.S. Vittoratos, Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model, Langmuir, 17 (2001) 1961–1969.
  23. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors, Adv. Funct. Mater., 19(3) (2009) 438-447.
  24. E. Pollak, I. Genish, G. Salitra, A. Soffer, L. Klein, D. Aurbach, The dependence of the electronic conductivity of carbon molecular sieve electrodes on their charging states, J. Phys. Chem. B, 110(14) (2006) 7443–7448.
  25. A. Omosebi, X. Gao, J. Landon, K. Liu, Asymmetric electrode configuration for enhanced membrane capacitive deionization, ACS Appl. Mater. Interfaces., 6 (2014) 12640–12649.
  26. G. Tian, L. Liu, Q. Meng, B. Cao, Facile synthesis of laminated graphene for advanced supercapacitor electrode material via simultaneous reduction and N-doping, J. Power Sources, 274 (2015) 851–861.
  27. G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado, J.B. Parra, C.O. Ania, N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions, Carbon, 83 (2015) 262–274.
  28. X. Xu, Z. Sun, D.H.C. Chua, L. Pan, Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance, Sci. Rep., 5 (2015) 1–9.
  29. Y. Liu, T. Chen, T. Lu, Z. Sun, D.H.C. Chua, L. Pan, Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization, Electrochim. Acta, 158 (2015) 403–409.
  30. S. Zhao, T. Yan, H. Wang, G. Chen, L. Huang, J. Zhang, L. Shi, D. Zhang, High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization, Appl. Surf. Sci., 369 (2016) 460–469.
  31. X. Gao, J. Landon, J.K. Neathery, K. Liu, Modification of carbon xerogel electrodes for more efficient asymmetric capacitive deionization, J. Electrochem. Soc., 160 (2013) E106– E112.
  32. E. Avraham, M. Noked, I. Cohen, A. Soffer, D. Aurbach, The dependence of the desalination performance in capacitive deionization processes on the electrodes PZC, J. Electrochem. Soc., 158 (2011) 168–173.
  33. H. Yoon, J. Lee, S. Kim, J. Yoon, Hybrid capacitive deionization with Ag coated carbon composite electrode, Desalination, 422 (2017) 42–48.
  34. F. Zhou, T. Gao, M. Luo, H. Li, Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity, Chem. Eng. J., 343 (2018) 8–15.
  35. P.M. Biesheuvel, H.V.M. Hamelers, M.E. Suss, Theory of water desalination by porous electrodes with immobile chemical charge, Colloid Interf. Sci. Commun., 9 (2015) 1–5.
  36. X. Gao, A. Omosebi, J. Landon, K. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior, Energy Environ. Sci., 8 (2015) 897–909.
  37. X. Gao, A. Omosebi, J. Landon, K. Liu, Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes, Environ. Sci. Technol., 49 (2015) 10920–10926.
  38. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442.
  39. P.M. Biesheuvel, A. van der Wal, Membrane capacitive deionization, J. Membr. Sci., 346 (2010) 256–262.
  40. M. Mossad, L. Zou, Evaluation of the salt removal efficiency of capacitive deionisation : Kinetics , isotherms and thermodynamics, Chem. Eng. J., 223 (2013) 704–713.
  41. Q.F. Deng, L. Liu, X.Z. Lin, G. Du, Y. Liu, Z.Y. Yuan, Synthesis and CO2 capture properties of mesoporous carbon nitride materials, Chem. Eng. J., 203 (2012) 63–70.
  42. G.-P. Hao, W.-C. Li, D. Qian, A.-H. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture, Adv. Mater., 22 (2010) 853–857.
  43. C.N.R. Rao, K. Gopalakrishnan, A. Govindaraj, Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements, Nano Today, 9 (2014) 324–343.
  44. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett., 11 (2011) 2472–2477.
  45. W. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Sulfur- containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection, Energy Environ. Sci., 6 (2013) 2465.
  46. Y. Wang, B. Zhang, M. Xu, X. He, Tunable ternary (P, S, N)-doped graphene as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium, RSC Adv., 5 (2015) 86746–86753.
  47. Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C.Q. Sun, L. Pan, Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization, Carbon, 130 (2018) 377–383.
  48. L. Liu, X. Guo, R. Tallon, X. Huang, J. Chen, Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization, Chem. Commun., 53 (2017) 881–884.
  49. X. Gu, Y. Yang, Y. Hu, M. Hu, J. Huang, C. Wang, Nitrogen-doped graphene composites as efficient electrodes with enhanced capacitive deionization performance, RSC Adv. 4 (2014) 63189–63199. doi:10.1039/C4RA11468J.
  50. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids, Pure Appl. Chem., 66(8) (1994) 1739–1758.
  51. H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater., 23 (2011) 1089– 1115.
  52. C.T. Hsieh, H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40 (2002) 667–674.
  53. S.R.S. Prabaharan, R. Vimala, Z. Zainal, Nanostructured mesoporous carbon as electrodes for supercapacitors, J. Power Sources, 161 (2006) 730–736.
  54. M. Noked, E. Avraham, A. Soffer, D. Aurbach, The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination, J. Phys. Chem. C, 113 (2009) 21319–21327.