References
- Y.S. Lu, X.X. Yang, L. Xu, Z. Wang, Y.F. Xu, G.R. Qian, Sulfate
radicals from Fe3+/persulfate system for Rhodamine B degradation,
Desal. Water Treat., 57 (2016) 29411–29420.
- L.X. Qin, Q. Luo, K.J. Liang, S.Z. Kang, G.D. Li, X.Q. Li, Highly
efficient decomposition of rhodamine B in wastewater with
graphene/silver-based nanocomposite catalyst: process optimization
and kinetics, Desal. Water Treat., 84 (2017) 40–47.
- U.B. Ogutveren, M. Ogutveren, Green synthesis of iron nano-materials
by plants and their use in removal of pollutants from
wastewaters - a review, Desal. Water Treat., 78 (2017) 141–154.
- Y.S. Lu, Z. Wang, Y.F. Xu, Q. Liu, G.R. Qian, Fe2(MoO4)(3)
as a novel heterogeneous catalyst to activate persulfate for
Rhodamine B degradation, Desal. Water Treat., 57 (2016) 7898–7909.
- X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications, Chem. Rev.,
107 (2007) 2891–2959.
- A. Haarstrick, O.M. Kut, E. Heinzle, TiO2-assisted degradation
of environmentally relevant organic compounds in wastewater
using a novel fluidized bed photoreactor, Environ. Sci.
Technol., 30 (1996) 8.
- D. Zhao, C.C. Chen, Y.F. Wang, W.H. Ma, J.C. Zhao, T. Rajh,
L. Zang, Enhanced photocatalytic degradation of dye pollutants
under visible irradiation on Al(III)-modified TiO2-structure,
interaction, and interfacial electron transfer, Environ. Sci.
Technol., 38 (2008) 308–314.
- H. Tada, Y. Kubo, M. Akazawa, S. Ito, Promoting effect of SiOx
monolayer coverage of TiO2 on the photoinduced oxidation of
cationic surfactants, Langmuir, 14 (1998) 2936–2939.
- H. Tada, M. Yamamoto, S. Ito, Promoting effect of MgOx submonolayer
coverage of TiO2 on the photoinduced oxidation of
anionic surfactants, Langmuir, 15 (1999) 3699–3702.
- Y.M. Xu, C.H. Langford, Photoactivity of titanium dioxide supported
on MCM-41, zeolite X, and zeolite Y, J. Phys. Chem. B,
101 (1997) 3115–3121.
- W. Wei, S. Mo, Photocatalytic activity of titania-containing
mesoporous SBA-15 silica, Microporous Mesoporous Mater.,
96 (2006) 255–261.
- W. Patrick, S. Dietmar, Photodegradation of rhodamine B in
aqueous solution via SiO2@TiO2 nanospheres, J. Photochem.
Photobiol. A, 185 (2007) 19–25.
- J.C. Zhao, T.X. Wu, K.Q. Wu, K. Oikawa, H. Hidaka, N. Ssrpone,
Photoassisted degradation of dye pollutants. 3. Degradation of
the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for
the need of substrate adsorption on TiO2 particles, Environ.
Sci. Technol., 32 (1998) 2394–2400.
- H. Ijadpanah-Saravi, M. Zolfaghari, A. Khodadadi, P. Drogui,
Synthesis, characterization, and photocatalytic activity of TiO2-SiO2 nanocomposites, Desal. Water Treat., 57 (2016) 14647–14655.
- J. Angkhana, P. Nuchanaporn, K. Nudthakarn, S. Ron, Nanocomposite
TiO2–SiO2 gel for UV absorption, Chem. Eng. J.,
181–182 (2012) 45–55.
- Z. Liu, F.T. Chen, P.F. Fang, S.J. Wang, Y.P. Gao, F. Zheng, Y. Liu,
Y.Q. Dai, Study of adsorption-assisted photocatalytic oxidation
of benzene with TiO2/SiO2 nanocomposites, Appl. Catal.
A- Gen., 451 (2013) 120–126.
- W.Y. Dong, C.W. Lee, X.C. Lu, Y.J. Sun, W.M. Hua, G.S. Zhuang,
S.C. Zhang, J.M. Chen, H.Q. Hou, D.Y. Zhao, Synchronous role
of coupled adsorption and photocatalytic oxidation on ordered
mesoporous anatase TiO2–SiO2 nanocomposites generating
excellent degradation activity of RhB dye, Appl. Catal. B: Environ.,
95 (2010) 197–207.
- A. Haghighatzadeh, B. Mazinani, M.S. Asl, L. Bakhtiari, TiO2
(rutile and anatase) deposited on ordered mesoporous SiO2:
effect of pore size on photocatalytic activity, Desal. Water
Treat., 80 (2017) 156–163.
- R. Mohammadi, Influence of preparation method on the physicochemical
properties and catalytic activity of SiO2-TiO2 mixed
oxides, Desal. Water Treat., 57 (2016) 22370–22377.
- M. Homayoonfal, M.R. Mehrnia, Y.M. Mojtahedi, A.F. Ismail,
Effect of metal and metal oxide nanoparticle impregnation
route on structure and liquid filtration performance of polymeric
nanocomposite membranes: a comprehensive review,
Desal. Water Treat., 51 (2013) 3295–3316.
- J.H. Jhaveri, Z.V.P. Murthy, Nanocomposite membranes, Desal.
Water Treat., 57 (2016) 26803–26819.
- X.F. Lei, X.X. Xue, Preparation and characterization of perovskite-type titania-bearing blast furnace slag photocatalyst,
Mater. Sci. Semicond. Process., 11 (2008) 117–121.
- X.F. Lei, X.X. Xue, H. Yang, Preparation of UV-visible light
responsive photocatalyst from titania-bearing blast furnace
slag modified with (NH4)2SO4, T. Nonferr. Metal. Soc., 22 (2012)
1771–1777.
- K.M. Parida, N. Sahu, N.R. Biswal, B. Naik, A.C. Pradhan,
Preparation, characterization, and photocatalytic activity of
sulfate-modified titania for degradation of methyl orange
under visible light, J. Colloid Interface Sci., 318 (2008) 231–
237.
- H. Liu, T. Xia, H.K. Shon, S. Vigneswaran, Preparation of titania-
containing photocatalysts from metallurgical slag waste
and photodegradation of 2,4-dichlorophenol, J. Ind. Eng.
Chem., 17 (2011) 461–467.
- L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, Z.T. Sui, Recovery
of titanium compounds from molten Ti-bearing blast furnace
slag under the dynamic oxidation condition, Miner. Eng., 20
(2007) 684–693.
- L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, J.S. Jang,
Effect of perovskite phase precipitation on viscosity of Ti-bearing
blast furnace slag under the dynamic oxidation condition,
J. Non-Cryst. Solids, 352 (2006) 123–129.
- X.F. Lei, X.X. Xue, Preparation, characterization and photocatalytic
activity of sulfuric acid-modified titanium-bearing blast
furnace slag, T. Nonferr. Metal. Soc., 20 (2010) 2294–2298.
- X.F. Lei, X.X. Xue, H. Yang, Effect of preparation method on
photocatalytic activity of titanium-bearing blast furnace slag,
Adv. Mater. Res., 690–693 (2013) 1081–1085.
- M. Balakrishnan, V.S. Batra, J.S.J. Hargreaves, I.D. Pulford,
Waste materials – catalytic opportunities: an overview of the
application of large scale waste materials as resources for catalytic
applications, Green Chem., 13 (2011) 16–24.
- T.Y. Xue, L. Wang, T. Qi, J.L. Chu, J.K. Qu, C.H. Liu, Decomposition
kinetics of titanium slag in sodium hydroxide system,
Hydrometallurgy, 95 (2009) 22–27.
- K. Yasutaka, O. Tetsutaro, M. Kohsuke, K. Iwao, Y. Hiromi,
Synthesis of zeolite from steel slag and its application as a support
of nano-sized TiO2 photocatalyst, J. Mater. Sci., 43 (2007)
2407–2410.
- Z.H. Zhang, X.N. He, Q. Jin, T.F. Lv, Determination of Si(IV)
in ZSM-5 zeolites by spectrophotometry, J. Beijing Inst. Petrochem. Technol., 18 (2010) 43–46.
- S.G. Yang, C. Sun, X.Y. Li, Z.Q. Gong, X. Quan, Enhanced photocatalytic
activity for titanium dioxide by co-modifying with
silica and fluorine, J. Hazard. Mater., 175 (2010) 258–266.
- S. Yuan, L.Y. Shi, K. Mori, H. Yamashita, Preparation of highly
dispersed TiO2 in hydrophobic mesopores by simultaneous
grafting and fluorinating, Micropor. Mesopor. Mat., 117 (2009)
356–361.
- Y. Li, L.L. Liu, M. Guo, M. Zhang, Synthesis of TiO2 visible light
catalysts with controllable crystalline phase and morphology
from Ti-bearing electric arc furnace molten slag, J. Environ.
Sci. China, 47 (2016) 14–22.
- M.S. Vohra, K. Tanaka, Photocatalytic degradation of aqueous
pollutants using silica-modified TiO2, Water Res., 37 (2003)
3992–3996.
- W.Q. Fang, J.Z. Zhou, J. Liu, Z.G. Chen, C. Yang, C.H. Sun, G.R.
Qian, J. Zou, S.Z. Qiao, H.G. Yang, Hierarchical structures of
single-crystalline anatase TiO2 nanosheets dominated by {001}
facets, Chemistry, 17 (2011) 1423–1427.
- C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang,
Synthesis of micro-sized titanium dioxide nanosheets wholly
exposed with high-energy {001} and {100} facets, Chemical
Commun., 47 (2011) 4400–4402.
- W.M. Haynes, Handbook of Chemistry and Physics, in: Solubility
Product Constants CRC Press, Florida, 2011, pp. 1344.
- L.G. Gerasimova, M.V. Maslova, E.S. Shchukina, Obtaining of
titanium-containing products via the hydrochloric acid processing
of grothite and perovskite, Theor. Found. Chem. Eng.,
45 (2011) 511–516.
- E. Olanipekun, A kinetic study of the leaching of a Nigerian
ilmenite ore by hydrochloric acid, Hydrometallurgy, 53 (1999)
1–10.
- N.Y. Mostafa, M.H.H. Mahmoud, Z.K. Heiba, Hydrolysis of
TiOCl2 leached and purified from low-grade ilmenite mineral,
Hydrometallurgy, 139 (2013) 88–94.
- M. Madekufamba, L.N. Trevani, P.R. Tremaine, Standard
enthalpy of formation of aqueous titanyl chloride, TiOCl2(aq),
at T = 298.15K, J. Chem. Thermodyn., 38 (2006) 1563–1567.
- Y.N. Kim, G.N. Shao, S.J. Jeon, S.M. Imran, P.B. Sarawade, H.T.
Kim, Sol–gel synthesis of sodium silicate and titanium oxychloride
based TiO2–SiO2 aerogels and their photocatalytic
property under UV irradiation, Chem. Eng. J., 231 (2013) 502–
511.
- C. Minero, F. Catozzo, E. Pelizzett, Role of adsorption in photocatalyzed
reactions of organic molecules in aqueous titania
suspensions, Langmuir, 8 (1992) 481–486.