References

  1. Y.S. Lu, X.X. Yang, L. Xu, Z. Wang, Y.F. Xu, G.R. Qian, Sulfate radicals from Fe3+/persulfate system for Rhodamine B degradation, Desal. Water Treat., 57 (2016) 29411–29420.
  2. L.X. Qin, Q. Luo, K.J. Liang, S.Z. Kang, G.D. Li, X.Q. Li, Highly efficient decomposition of rhodamine B in wastewater with graphene/silver-based nanocomposite catalyst: process optimization and kinetics, Desal. Water Treat., 84 (2017) 40–47.
  3. U.B. Ogutveren, M. Ogutveren, Green synthesis of iron nano-materials by plants and their use in removal of pollutants from wastewaters - a review, Desal. Water Treat., 78 (2017) 141–154.
  4. Y.S. Lu, Z. Wang, Y.F. Xu, Q. Liu, G.R. Qian, Fe2(MoO4)(3) as a novel heterogeneous catalyst to activate persulfate for Rhodamine B degradation, Desal. Water Treat., 57 (2016) 7898–7909.
  5. X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  6. A. Haarstrick, O.M. Kut, E. Heinzle, TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor, Environ. Sci. Technol., 30 (1996) 8.
  7. D. Zhao, C.C. Chen, Y.F. Wang, W.H. Ma, J.C. Zhao, T. Rajh, L. Zang, Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2-structure, interaction, and interfacial electron transfer, Environ. Sci. Technol., 38 (2008) 308–314.
  8. H. Tada, Y. Kubo, M. Akazawa, S. Ito, Promoting effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of cationic surfactants, Langmuir, 14 (1998) 2936–2939.
  9. H. Tada, M. Yamamoto, S. Ito, Promoting effect of MgOx submonolayer coverage of TiO2 on the photoinduced oxidation of anionic surfactants, Langmuir, 15 (1999) 3699–3702.
  10. Y.M. Xu, C.H. Langford, Photoactivity of titanium dioxide supported on MCM-41, zeolite X, and zeolite Y, J. Phys. Chem. B, 101 (1997) 3115–3121.
  11. W. Wei, S. Mo, Photocatalytic activity of titania-containing mesoporous SBA-15 silica, Microporous Mesoporous Mater., 96 (2006) 255–261.
  12. W. Patrick, S. Dietmar, Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nanospheres, J. Photochem. Photobiol. A, 185 (2007) 19–25.
  13. J.C. Zhao, T.X. Wu, K.Q. Wu, K. Oikawa, H. Hidaka, N. Ssrpone, Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles, Environ. Sci. Technol., 32 (1998) 2394–2400.
  14. H. Ijadpanah-Saravi, M. Zolfaghari, A. Khodadadi, P. Drogui, Synthesis, characterization, and photocatalytic activity of TiO2-SiO2 nanocomposites, Desal. Water Treat., 57 (2016) 14647–14655.
  15. J. Angkhana, P. Nuchanaporn, K. Nudthakarn, S. Ron, Nanocomposite TiO2–SiO2 gel for UV absorption, Chem. Eng. J., 181–182 (2012) 45–55.
  16. Z. Liu, F.T. Chen, P.F. Fang, S.J. Wang, Y.P. Gao, F. Zheng, Y. Liu, Y.Q. Dai, Study of adsorption-assisted photocatalytic oxidation of benzene with TiO2/SiO2 nanocomposites, Appl. Catal. A- Gen., 451 (2013) 120–126.
  17. W.Y. Dong, C.W. Lee, X.C. Lu, Y.J. Sun, W.M. Hua, G.S. Zhuang, S.C. Zhang, J.M. Chen, H.Q. Hou, D.Y. Zhao, Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye, Appl. Catal. B: Environ., 95 (2010) 197–207.
  18. A. Haghighatzadeh, B. Mazinani, M.S. Asl, L. Bakhtiari, TiO2 (rutile and anatase) deposited on ordered mesoporous SiO2: effect of pore size on photocatalytic activity, Desal. Water Treat., 80 (2017) 156–163.
  19. R. Mohammadi, Influence of preparation method on the physicochemical properties and catalytic activity of SiO2-TiO2 mixed oxides, Desal. Water Treat., 57 (2016) 22370–22377.
  20. M. Homayoonfal, M.R. Mehrnia, Y.M. Mojtahedi, A.F. Ismail, Effect of metal and metal oxide nanoparticle impregnation route on structure and liquid filtration performance of polymeric nanocomposite membranes: a comprehensive review, Desal. Water Treat., 51 (2013) 3295–3316.
  21. J.H. Jhaveri, Z.V.P. Murthy, Nanocomposite membranes, Desal. Water Treat., 57 (2016) 26803–26819.
  22. X.F. Lei, X.X. Xue, Preparation and characterization of perovskite-type titania-bearing blast furnace slag photocatalyst, Mater. Sci. Semicond. Process., 11 (2008) 117–121.
  23. X.F. Lei, X.X. Xue, H. Yang, Preparation of UV-visible light responsive photocatalyst from titania-bearing blast furnace slag modified with (NH4)2SO4, T. Nonferr. Metal. Soc., 22 (2012) 1771–1777.
  24. K.M. Parida, N. Sahu, N.R. Biswal, B. Naik, A.C. Pradhan, Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light, J. Colloid Interface Sci., 318 (2008) 231– 237.
  25. H. Liu, T. Xia, H.K. Shon, S. Vigneswaran, Preparation of titania- containing photocatalysts from metallurgical slag waste and photodegradation of 2,4-dichlorophenol, J. Ind. Eng. Chem., 17 (2011) 461–467.
  26. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20 (2007) 684–693.
  27. L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, J.S. Jang, Effect of perovskite phase precipitation on viscosity of Ti-bearing blast furnace slag under the dynamic oxidation condition, J. Non-Cryst. Solids, 352 (2006) 123–129.
  28. X.F. Lei, X.X. Xue, Preparation, characterization and photocatalytic activity of sulfuric acid-modified titanium-bearing blast furnace slag, T. Nonferr. Metal. Soc., 20 (2010) 2294–2298.
  29. X.F. Lei, X.X. Xue, H. Yang, Effect of preparation method on photocatalytic activity of titanium-bearing blast furnace slag, Adv. Mater. Res., 690–693 (2013) 1081–1085.
  30. M. Balakrishnan, V.S. Batra, J.S.J. Hargreaves, I.D. Pulford, Waste materials – catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications, Green Chem., 13 (2011) 16–24.
  31. T.Y. Xue, L. Wang, T. Qi, J.L. Chu, J.K. Qu, C.H. Liu, Decomposition kinetics of titanium slag in sodium hydroxide system, Hydrometallurgy, 95 (2009) 22–27.
  32. K. Yasutaka, O. Tetsutaro, M. Kohsuke, K. Iwao, Y. Hiromi, Synthesis of zeolite from steel slag and its application as a support of nano-sized TiO2 photocatalyst, J. Mater. Sci., 43 (2007) 2407–2410.
  33. Z.H. Zhang, X.N. He, Q. Jin, T.F. Lv, Determination of Si(IV) in ZSM-5 zeolites by spectrophotometry, J. Beijing Inst. Petrochem. Technol., 18 (2010) 43–46.
  34. S.G. Yang, C. Sun, X.Y. Li, Z.Q. Gong, X. Quan, Enhanced photocatalytic activity for titanium dioxide by co-modifying with silica and fluorine, J. Hazard. Mater., 175 (2010) 258–266.
  35. S. Yuan, L.Y. Shi, K. Mori, H. Yamashita, Preparation of highly dispersed TiO2 in hydrophobic mesopores by simultaneous grafting and fluorinating, Micropor. Mesopor. Mat., 117 (2009) 356–361.
  36. Y. Li, L.L. Liu, M. Guo, M. Zhang, Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag, J. Environ. Sci. China, 47 (2016) 14–22.
  37. M.S. Vohra, K. Tanaka, Photocatalytic degradation of aqueous pollutants using silica-modified TiO2, Water Res., 37 (2003) 3992–3996.
  38. W.Q. Fang, J.Z. Zhou, J. Liu, Z.G. Chen, C. Yang, C.H. Sun, G.R. Qian, J. Zou, S.Z. Qiao, H.G. Yang, Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets, Chemistry, 17 (2011) 1423–1427.
  39. C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets, Chemical Commun., 47 (2011) 4400–4402.
  40. W.M. Haynes, Handbook of Chemistry and Physics, in: Solubility Product Constants CRC Press, Florida, 2011, pp. 1344.
  41. L.G. Gerasimova, M.V. Maslova, E.S. Shchukina, Obtaining of titanium-containing products via the hydrochloric acid processing of grothite and perovskite, Theor. Found. Chem. Eng., 45 (2011) 511–516.
  42. E. Olanipekun, A kinetic study of the leaching of a Nigerian ilmenite ore by hydrochloric acid, Hydrometallurgy, 53 (1999) 1–10.
  43. N.Y. Mostafa, M.H.H. Mahmoud, Z.K. Heiba, Hydrolysis of TiOCl2 leached and purified from low-grade ilmenite mineral, Hydrometallurgy, 139 (2013) 88–94.
  44. M. Madekufamba, L.N. Trevani, P.R. Tremaine, Standard enthalpy of formation of aqueous titanyl chloride, TiOCl2(aq), at T = 298.15K, J. Chem. Thermodyn., 38 (2006) 1563–1567.
  45. Y.N. Kim, G.N. Shao, S.J. Jeon, S.M. Imran, P.B. Sarawade, H.T. Kim, Sol–gel synthesis of sodium silicate and titanium oxychloride based TiO2–SiO2 aerogels and their photocatalytic property under UV irradiation, Chem. Eng. J., 231 (2013) 502– 511.
  46. C. Minero, F. Catozzo, E. Pelizzett, Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions, Langmuir, 8 (1992) 481–486.