References

  1. J.-J. Lee, C.-S. Jang, S.-W. Wang, C.-W. Liu, Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model, Sci. Total Environ., 384 (2007) 151–162.
  2. S.M. Buchanan, J. Triantafilis, Mapping water table depth using geophysical and environmental variables, Ground Water, 47 (2009) 80–96.
  3. R. Mirzaei, M. Sakizadeh, Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran, Environ. Sci. Pollut. Res., 23 (2016) 2758–2769.
  4. C.-W. Liu, C.-S. Jang, C.-M. Liao, Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan), Sci. Total Environ., 321 (2004) 173–188.
  5. G. Gong, S. Mattevada, S.E. O’Bryant, Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas, Environ. Res., 130 (2014) 59–69.
  6. R. EgwuOtuIduma, T. Kingdom Simeon Abam, E. Daniel Uko, Geostatistical study of the spatial variability of groundwater parameters in Afikpo and Ohaozara, Southeastern Nigeria, J. Water Resour. Environ. Eng., 9(4) (2017) 72–85.
  7. R. Liu, Y. Chen, C. Sun, P. Zhang, J. Wang, W. Yu, Z. Shen, Uncertainty analysis of total phosphorus spatial-temporal variation in the Yangtze River Estuary using different interpolation method, Mar. Pollut. Bull., 86 (2014) 68–75.
  8. H. Arslan, Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra Plain, Turkey, Agric. Water Manage., 113 (2012) 57–63.
  9. B. Nas, A. Berktay, Groundwater quality mapping in urban groundwater using GIS, Environ. Monit. Assess., 160 (2010) 215–227.
  10. V. Kumar, Optimal contour mapping of groundwater levels using universal kriging—a case study, Hydrol. Sci. J., 52 (2007) 1038–1050.
  11. Z. Alizadeh, N. Mahjouri, A spatiotemporal Bayesian maximum entropy-based methodology for dealing with sparse data in revising groundwater quality monitoring networks: the Tehran region experience, Environ. Earth Sci., 76 (2017) 436.
  12. K. Khalili, Comparison of geostatistical methods for interpolation groundwater level (Case study: Lake Urmia Basin), J. Appl. Environ. Biol. Sci., 4(1s) (2014) 15–23.
  13. J. Joseph, H.O. Sharif, T. Sunil, H. Alamgir Application of validation data for assessing spatial interpolation methods for 8-h ozone or other sparsely monitored constituents, Environ. Pollut., 178 (2013) 411– 418.
  14. N. Theodossiou, P. Latinopoulos, Evaluation and optimization of groundwater observation networks using the Kriging methodology, Environ. Model Softw., 21 (2006) 991–1000.
  15. I. Triki, M. Zairi, H.B. Dhia, A geostatistical approach for groundwater head monitoring, network optimisation: case of the Sfax superficial aquifer (Tunisia), Water Environ. J., 27 (2012) 362–372.
  16. Y. Ran, X. Li, Y. Ge, X. Lu, Y. Lian, Optimal selection of groundwater level monitoring sites in the Zhangye Basin, Northwest China. J Hydrol., 525 (2015) 209–215.
  17. M. Keblouti, L. Ouerdachi, H. Boutaghane, Spatial interpolation of annual precipitation in Annaba-Algeria—comparison and evaluation of methods, Energy Procedia., 18 (2012) 468– 475.
  18. E. BahramiJovein, S.M. Hosseini, Predicting saltwater intrusion into aquifers in vicinity of deserts using spatio-temporal kriging, Environ. Monit. Assess., 189 (2017) 81.
  19. C.C.F. Plouffe, C. Robertson, L. Chandrapala, Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: a case study of Sri Lanka, Environ. Model Softw., 65 (2015) 57–71.
  20. A. Izady, O. Abdalla, T. Ahmadi, M. Chen, An efficient methodology to design optimal groundwater level monitoring network in Al-Buraimi region, Oman. Arab J. Geosci., (2017) 10–26.
  21. A. Journel, P. Kyriakidis, S. Mao, Correcting the smoothing effect of estimators: a spectral postprocessor, Math. Geol., 32 (2000) 787–813.
  22. Y. Xie, T.-B. Chen, M. Lei, J. Yang, Q.-J. Guo, B. Song, X.-Y. Zhou, Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis, Chemosphere, 82 (2011) 468–476.
  23. P. Goovaerts, Estimation or simulation of soil properties? An optimization problem with conflicting criteria, Geoderma, 97 (2000) 165–186.
  24. J. LI, A.D. Heap, A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors, Ecol. Inform., 6(3–4) (2011) 228–241.
  25. J. LI, A.D. Heap, spatial interpolation methods applied in the environmental science, Environ. Model. Software, 53 (2014) 173–189.
  26. R.F. Siegel, Environmental Geochemistry of Potentially Toxic Metals. Springer, Berlin, 2002, 218 p.
  27. G. Stamatis, Ground water quality of the Ag. Paraskevi Tempi valley karstic springs application of a tracing test for research of the micro-bial pollution (KatoOlympos/NE Thessaly), Bull. Geol. Soc. Greece, 43 (2010) 1868–1877.
  28. G. Gnanachandrasamy, T. Ramkumar, S. Venkatramanan, S. Vasudevan, S.Y.M. Chung, Bagyaraj accessing groundwater quality in lower part of Nagapattinam district, Southern India: using hydrogeochemistry and GIS interpolation techniques, Appl. Water Sci., 5 (2015) 39–55.
  29. S.S. Dhindsa, P. Bheel, Y. Musturia, Hydrochemical study of ground water quality variation in Tonk District, Rajasthan, Indian J. Environ. Ecoplan., 8(1) (2004) 129–136.
  30. V. Ramasubramanian, R. Jeyaprakash, D.A. Ruby Mallika, R. Ramasubbu, V. Mariappan, Analysis of physico-chemical characteristics of ground water quality and quality index in and around Sivakasi Town, Indian J. Environ. Ecoplan., 8(1) (2004) 171–176.
  31. K.S. Murray, Hydrology and geochemistry of thermal waters in the Upper Napa Valley, California, Ground Water, 34 (1996) 1115–1124.
  32. M. Rosen, S. Jones, Controls on the chemical composition of ground water from alluvial aquifers in the Wanaka and Wakatipu basins, CentralOtago, NewZealand, Hydrogeol, 16 (1998) 264–281.
  33. Minister des Ressources en Eau, l’agence de bassain Algérois – Houdna - Soummam Bassin de l’Algérois catnet N°1 (2002) 1–37. http://www.abhahs.org/media/documents/carnet02.pdf.
  34. G. Mutin, Implantations industrielles et aménagements du territoire en Algérie. In: Revue de géographie de Lyon, 55 pp. 5–37; 1980
  35. Y. Huh, G. Panteleyev, D. Babich, A. Zaitsev, J.M. Edmond, The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges, Geochim. Cosmochim. Acta, 62(12) (1998) 2053–2075.
  36. R.K. Horton, An index number system for rating water quality, J. Water Contam. Control Fed., 37 (1965) 300–306.
  37. M. Rupal, B. Tannushree, C. Sukalyan, Quality characterization of groundwater using water quality index in Surat City, Gujarat, India, Int. Res. J. Environ. Sci., 1(4) (2012) 14–23.
  38. A.K. Tiwari, P.K. Singh, M.K. Mahato, GIS-Based Evaluation of water quality index of groundwater resources in West Bokaro coalfield, India, Current World Environ., 9(3) (2014) 843–850.
  39. M. Sakizadeh, E. Ahmadpour, Geological impacts on groundwater pollution: a case study in Khuzestan Province, Environ. Earth Sci., (2016) 75–88.
  40. V.P. Samsonova, N. Blagoveshchenskii Yu, L. Meshalkina Yu, Use of empirical Bayesian Kriging for revealing heterogeneities in the distribution of organic carbon on agricultural lands, Eurasian Soil Sci., 50(3) (2017) 305–311.
  41. K. Krivoruchko (a) Empirical Bayesian Kriging. ArcUser Fall (2012) 6–10. Also available online at http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html.
  42. T. Heisel, K.A. Ersboll, C. Andreasen, Weed mapping with Co-Kriging using soil properties, Precision Agri., 1 (1999) 39–52.
  43. P.D. Wagner, P. Fiener, F. Wilken, S. Kumar, K. Schneider, Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions, J. Hydrol., 464–465 (2012) 388–400.
  44. a) A.N. Kravchenko, Influence of spatial structure on accuracy of interpolation methods, Soil Sci. Soc. Am. J., 67 (2003) 1564–1571. b) K. Krivoruchko, Modeling Contamination Using EmpiricalBayesian Kriging. ArcUser Fall 2012 http://www.esri.com/news/arcuser/1012/modeling-contamination-using-empirical-bayesian-kriging.html.
  45. O. Falivene, L. Cabrera, R. Tolosana-Delgado, A. Sáez, Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example, Comput. Geosci., 36 (2010) 512–519.
  46. K. Johnston, J.M. Ver Hoef, K. Krivoruchko, N. Lucas, Using ArcGIS Geostatistical Analyst (ESRI Userbook). (2001) and (2003) http://dusk2.geo.orst.edu/gis/geostat_analyst.pdf; http://downloads2.esri.com/support/documentation/ao_/Using_ArcGIS_Geostatistical_Analyst.pdf.