References
- J.-J. Lee, C.-S. Jang, S.-W. Wang, C.-W. Liu, Evaluation of potential
health risk of arsenic-affected groundwater using indicator
kriging and dose response model, Sci. Total Environ., 384
(2007) 151–162.
- S.M. Buchanan, J. Triantafilis, Mapping water table depth
using geophysical and environmental variables, Ground
Water, 47 (2009) 80–96.
- R. Mirzaei, M. Sakizadeh, Comparison of interpolation methods
for the estimation of groundwater contamination in
Andimeshk-Shush Plain, Southwest of Iran, Environ. Sci. Pollut.
Res., 23 (2016) 2758–2769.
- C.-W. Liu, C.-S. Jang, C.-M. Liao, Evaluation of arsenic contamination
potential using indicator kriging in the Yun-Lin aquifer
(Taiwan), Sci. Total Environ., 321 (2004) 173–188.
- G. Gong, S. Mattevada, S.E. O’Bryant, Comparison of the accuracy
of kriging and IDW interpolations in estimating groundwater
arsenic concentrations in Texas, Environ. Res., 130 (2014)
59–69.
- R. EgwuOtuIduma, T. Kingdom Simeon Abam, E. Daniel Uko,
Geostatistical study of the spatial variability of groundwater
parameters in Afikpo and Ohaozara, Southeastern Nigeria, J.
Water Resour. Environ. Eng., 9(4) (2017) 72–85.
- R. Liu, Y. Chen, C. Sun, P. Zhang, J. Wang, W. Yu, Z. Shen,
Uncertainty analysis of total phosphorus spatial-temporal
variation in the Yangtze River Estuary using different interpolation
method, Mar. Pollut. Bull., 86 (2014) 68–75.
- H. Arslan, Spatial and temporal mapping of groundwater
salinity using ordinary kriging and indicator kriging: the case
of Bafra Plain, Turkey, Agric. Water Manage., 113 (2012) 57–63.
- B. Nas, A. Berktay, Groundwater quality mapping in urban
groundwater using GIS, Environ. Monit. Assess., 160 (2010)
215–227.
- V. Kumar, Optimal contour mapping of groundwater levels
using universal kriging—a case study, Hydrol. Sci. J., 52 (2007)
1038–1050.
- Z. Alizadeh, N. Mahjouri, A spatiotemporal Bayesian maximum
entropy-based methodology for dealing with sparse
data in revising groundwater quality monitoring networks:
the Tehran region experience, Environ. Earth Sci., 76 (2017)
436.
- K. Khalili, Comparison of geostatistical methods for interpolation
groundwater level (Case study: Lake Urmia Basin), J.
Appl. Environ. Biol. Sci., 4(1s) (2014) 15–23.
- J. Joseph, H.O. Sharif, T. Sunil, H. Alamgir Application of validation
data for assessing spatial interpolation methods for 8-h
ozone or other sparsely monitored constituents, Environ. Pollut.,
178 (2013) 411– 418.
- N. Theodossiou, P. Latinopoulos, Evaluation and optimization
of groundwater observation networks using the Kriging methodology,
Environ. Model Softw., 21 (2006) 991–1000.
- I. Triki, M. Zairi, H.B. Dhia, A geostatistical approach for
groundwater head monitoring, network optimisation: case
of the Sfax superficial aquifer (Tunisia), Water Environ. J., 27
(2012) 362–372.
- Y. Ran, X. Li, Y. Ge, X. Lu, Y. Lian, Optimal selection of groundwater
level monitoring sites in the Zhangye Basin, Northwest
China. J Hydrol., 525 (2015) 209–215.
- M. Keblouti, L. Ouerdachi, H. Boutaghane, Spatial interpolation
of annual precipitation in Annaba-Algeria—comparison
and evaluation of methods, Energy Procedia., 18 (2012) 468–
475.
- E. BahramiJovein, S.M. Hosseini, Predicting saltwater intrusion
into aquifers in vicinity of deserts using spatio-temporal
kriging, Environ. Monit. Assess., 189 (2017) 81.
- C.C.F. Plouffe, C. Robertson, L. Chandrapala, Comparing
interpolation techniques for monthly rainfall mapping using
multiple evaluation criteria and auxiliary data sources: a case
study of Sri Lanka, Environ. Model Softw., 65 (2015) 57–71.
- A. Izady, O. Abdalla, T. Ahmadi, M. Chen, An efficient methodology
to design optimal groundwater level monitoring
network in Al-Buraimi region, Oman. Arab J. Geosci., (2017)
10–26.
- A. Journel, P. Kyriakidis, S. Mao, Correcting the smoothing
effect of estimators: a spectral postprocessor, Math. Geol., 32
(2000) 787–813.
- Y. Xie, T.-B. Chen, M. Lei, J. Yang, Q.-J. Guo, B. Song, X.-Y. Zhou,
Spatial distribution of soil heavy metal pollution estimated
by different interpolation methods: accuracy and uncertainty
analysis, Chemosphere, 82 (2011) 468–476.
- P. Goovaerts, Estimation or simulation of soil properties? An
optimization problem with conflicting criteria, Geoderma, 97
(2000) 165–186.
- J. LI, A.D. Heap, A review of comparative studies of spatial
interpolation methods in environmental sciences: performance
and impact factors, Ecol. Inform., 6(3–4) (2011) 228–241.
- J. LI, A.D. Heap, spatial interpolation methods applied in the
environmental science, Environ. Model. Software, 53 (2014)
173–189.
- R.F. Siegel, Environmental Geochemistry of Potentially Toxic
Metals. Springer, Berlin, 2002, 218 p.
- G. Stamatis, Ground water quality of the Ag. Paraskevi Tempi
valley karstic springs application of a tracing test for research
of the micro-bial pollution (KatoOlympos/NE Thessaly), Bull.
Geol. Soc. Greece, 43 (2010) 1868–1877.
- G. Gnanachandrasamy, T. Ramkumar, S. Venkatramanan, S.
Vasudevan, S.Y.M. Chung, Bagyaraj accessing groundwater
quality in lower part of Nagapattinam district, Southern India:
using hydrogeochemistry and GIS interpolation techniques,
Appl. Water Sci., 5 (2015) 39–55.
- S.S. Dhindsa, P. Bheel, Y. Musturia, Hydrochemical study of
ground water quality variation in Tonk District, Rajasthan,
Indian J. Environ. Ecoplan., 8(1) (2004) 129–136.
- V. Ramasubramanian, R. Jeyaprakash, D.A. Ruby Mallika,
R. Ramasubbu, V. Mariappan, Analysis of physico-chemical
characteristics of ground water quality and quality index in
and around Sivakasi Town, Indian J. Environ. Ecoplan., 8(1)
(2004) 171–176.
- K.S. Murray, Hydrology and geochemistry of thermal waters
in the Upper Napa Valley, California, Ground Water, 34 (1996)
1115–1124.
- M. Rosen, S. Jones, Controls on the chemical composition
of ground water from alluvial aquifers in the Wanaka and
Wakatipu basins, CentralOtago, NewZealand, Hydrogeol, 16
(1998) 264–281.
- Minister des Ressources en Eau, l’agence de bassain Algérois
– Houdna - Soummam Bassin de l’Algérois catnet N°1 (2002)
1–37. http://www.abhahs.org/media/documents/carnet02.pdf.
- G. Mutin, Implantations industrielles et aménagements du
territoire en Algérie. In: Revue de géographie de Lyon, 55 pp.
5–37; 1980
- Y. Huh, G. Panteleyev, D. Babich, A. Zaitsev, J.M. Edmond,
The fluvial geochemistry of the rivers of Eastern Siberia: II.
Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma,
and Anadyr draining the collisional/accretionary zone of the
Verkhoyansk and Cherskiy ranges, Geochim. Cosmochim.
Acta, 62(12) (1998) 2053–2075.
- R.K. Horton, An index number system for rating water quality,
J. Water Contam. Control Fed., 37 (1965) 300–306.
- M. Rupal, B. Tannushree, C. Sukalyan, Quality characterization
of groundwater using water quality index in Surat City,
Gujarat, India, Int. Res. J. Environ. Sci., 1(4) (2012) 14–23.
- A.K. Tiwari, P.K. Singh, M.K. Mahato, GIS-Based Evaluation of
water quality index of groundwater resources in West Bokaro
coalfield, India, Current World Environ., 9(3) (2014) 843–850.
- M. Sakizadeh, E. Ahmadpour, Geological impacts on groundwater
pollution: a case study in Khuzestan Province, Environ.
Earth Sci., (2016) 75–88.
- V.P. Samsonova, N. Blagoveshchenskii Yu, L. Meshalkina Yu,
Use of empirical Bayesian Kriging for revealing heterogeneities
in the distribution of organic carbon on agricultural
lands, Eurasian Soil Sci., 50(3) (2017) 305–311.
- K. Krivoruchko (a) Empirical Bayesian Kriging. ArcUser Fall
(2012) 6–10. Also available online at http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html.
- T. Heisel, K.A. Ersboll, C. Andreasen, Weed mapping with
Co-Kriging using soil properties, Precision Agri., 1 (1999)
39–52.
- P.D. Wagner, P. Fiener, F. Wilken, S. Kumar, K. Schneider, Comparison
and evaluation of spatial interpolation schemes for
daily rainfall in data scarce regions, J. Hydrol., 464–465 (2012)
388–400.
- a) A.N. Kravchenko, Influence of spatial structure on accuracy of
interpolation methods, Soil Sci. Soc. Am. J., 67 (2003) 1564–1571.
b) K. Krivoruchko, Modeling Contamination Using EmpiricalBayesian
Kriging. ArcUser Fall 2012 http://www.esri.com/news/arcuser/1012/modeling-contamination-using-empirical-bayesian-kriging.html.
- O. Falivene, L. Cabrera, R. Tolosana-Delgado, A. Sáez, Interpolation
algorithm ranking using cross-validation and the role
of smoothing effect. A coal zone example, Comput. Geosci., 36
(2010) 512–519.
- K. Johnston, J.M. Ver Hoef, K. Krivoruchko, N. Lucas, Using
ArcGIS Geostatistical Analyst (ESRI Userbook). (2001) and
(2003) http://dusk2.geo.orst.edu/gis/geostat_analyst.pdf;
http://downloads2.esri.com/support/documentation/ao_/Using_ArcGIS_Geostatistical_Analyst.pdf.