References

  1. M. Kulkarni, A. Chaudhari, Microbial remediation of nitro-aromatic compounds: an overview, J. Environ. Manage., 85 (2007) 496–512.
  2. B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science, 337 (2012) 686–690.
  3. L. Huang, S. Cheng, G. Chen, Bioelectrochemical systems for efficient recalcitrant wastes treatment, J. Chem. Technol. Biot., 86 (2011) 481–491.
  4. Y. Mu, K. Rabaey, R.A. Rozendal, Z. Yuan, J. Keller, Decolorization of azo dyes in bioelectrochemical systems, Environ. Sci. Technol., 43 (2009) 5137–5143.
  5. L. Huang, X. Chai, X. Quan, B.E. Logan, G. Chen, Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells, Bioresour. Technol., 111 (2012) 167–174.
  6. A.J. Wang, D. Cui, H.-Y. Cheng, Y.-Q. Guo, F.-Y. Kong, N.-Q. Ren, W.-M. Wu, A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction, J. Hazard. Mater., 199 (2012) 401–409.
  7. X. Jiang, J. Shen, Y. Han, S. Lou, W. Han, X. Sun, J. Li, Y. Mu, L. Wang, Efficient nitro reduction and dechlorination of 2, 4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study, Water Res., 88 (2016) 257–265.
  8. J. Shen, C. Feng, Y. Zhang, F. Jia, X. Sun, J. Li, W. Han, L. Wang, Y. Mu, Bioelectrochemical system for recalcitrant p-nitrophenol removal, J. Hazard. Mater., 209 (2012) 516–519.
  9. L. Zhang, X. Jiang, J. Shen, K. Xu, J. Li, X. Sun, W. Han, L. Wang, Enhanced bioelectrochemical reduction of p-nitrophenols in the cathode of self-driven microbial fuel cells, RSC Adv., 6 (2016) 29072–29079.
  10. S. Sevda, T.R. Sreekishnan, N. Pous, Sebastià Puig, Deepak Pant, Bioelectroremediation of perchlorate and nitrate contaminated water: A review, Bioresour. Technol., 255 (2018) 331–339.
  11. M. Sun, D.D. Reible, G.V. Lowry, K.B. Gregory, Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes, Environ. Sci. Technol., 46 (2012) 6174–6181.
  12. F. Kong, A. Wang, H.-Y. Ren, L. Huang, M. Xu, H. Tao, Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria, Bioresour. Technol., 158 (2014) 32–38.
  13. C. Zhang, M. Li, G. Liu, H. Luo, R. Zhang, Pyridine degradation in the microbial fuel cells, J. Hazard. Mater., 172 (2009) 465–471.
  14. Y. Luo, R. Zhang, G. Liu, J. Li, M. Li, C. Zhang, Electricity generation from indole and microbial community analysis in the microbial fuel cell, J. Hazard. Mater., 176 (2010) 759–764.
  15. P. Pandey, V.N. Shinde, R.L. Deopurkar, S.P. Kale, S.A. Patil, D. Pant, Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery, Appl. Energ., 168 (2016) 706–723.
  16. X. Jiang, J. Shen, K. Xu, D. Chen, Y. Mu, X. Sun, W. Han, J. Li, L. Wang, Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation, Water Res., 130 (2018) 291–299.
  17. J. Liang, W. Li, H. Zhang, X. Jiang, L. Wang, X. Liu, J. Shen, Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process, Chem. Eng. J., 338 (2018) 176–183.
  18. R.H. Liu, W.-W. Li, G.-P. Sheng, Z.-H. Tong, M.H.-W. Lam, H.-Q. Yu, Self-driven bioelectrochemical mineralization of azobenzene by coupling cathodic reduction with anodic intermediate oxidation, Electrochim. Acta, 154 (2015) 294–299.
  19. H.-Y. Cheng, B. Liang, Y. Mu, M.-H. Cui, K. Li, W.-M. Wu, A.-J. Wang, Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline in microbial fuel cells (MFCs), Water Res., 81 (2015) 72–83.
  20. H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38 (2004) 4040–4046.
  21. Y. Zhu, Y. Zhang, H.Q. Ren, J.J. Geng, K. Xu, H. Huang, L.L. Ding, Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor, Bioresour. Technol., 180 (2015) 345–351.
  22. B. Liang, H. Cheng, J.D. Van Nostrand, J. Ma, H. Yu, D. Kong, W. Liu, N. Ren, L. Wu, A. Wang, Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover, Water Res., 54 (2014) 137–148.
  23. B. Liang, H.Y. Cheng, D.Y. Kong, S.H. Gao, F. Sun, D. Cui, F.Y. Kong, A.J. Zhou, W.Z. Liu, N.Q. Ren, Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode, Environ. Sci. Technol., 47 (2013) 5353–5361.
  24. X. Jiang, J. Shen, S. Lou, Y. Mu, N. Wang, W. Han, X. Sun, J. Li, L. Wang, Comprehensive comparison of bacterial communities in a membrane-free bioelectrochemical system for removing different mononitrophenols from wastewater, Bioresour. Technol., 216 (2016) 645–652.
  25. J. Wang, B. Jin, L. Cheng, Investigation on redox mechanism of p-aminophenol in non-aqueous media by FT-IR spectroelectrochemistry, Electrochim. Acta, 91 (2013) 152–157.
  26. A.J. Wang, H.Y. Cheng, B. Liang, N.Q. Ren, D. Cui, N. Lin, B.H. Kim, K. Rabaey, Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode, Environ. Sci. Technol., 45 (2011) 10186–10193.
  27. Y. Song, Theoretical studies on electrochemistry of p-aminophenol, Spectrochim. Acta A: Molec. Biomolec. Spectrosc., 67 (2007) 611–618.
  28. H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu, Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode, Electrochim. Acta, 55 (2010) 7102–7108.
  29. J. Li, Q. Liu, Q. Ji, B. Lai, Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0–PM–PS system through response surface methodology (RSM), Appl. Catal. B-Environ., 200 (2017) 633–646.
  30. B. Lai, Y. Zhang, Z. Chen, P. Yang, Y. Zhou, J. Wang, Removal of p-nitrophenol (PNP) in aqueous solution by themicron-scale iron-copper (Fe/Cu) bimetallic particles, Appl. Catal. B-Environ., 144 (2014) 816– 830.
  31. S. Fatemi, A.A. Ghoreyshi, M. Rahimnejad, G.N. Darzi, D. Pant, Sulfide as an alternative electron donor to glucose for power generation in mediator-less microbial fuel cell, J. Environ. Sci. Heal. A, 52 (2017) 1150–1157.
  32. D. Kong, B. Liang, H. Yun, H. Cheng, J. Ma, M. Cui, A. Wang, N. Ren, Cathodic degradation of antibiotics: Characterization and pathway analysis, Water Res., 72 (2015) 281–292.
  33. K. Fricke, F. Harnisch, U. Schröder, On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells, Energy Environ. Sci., 1 (2008) 144–147.
  34. D. Chen, Y. Mu, J. Shen, L. Wang, Anchoring α-, β-, or γ-MnO2 into polypyrrole wrapping for modifying graphite felt anodes: the effect of MnO2 type on phenol degradation, Chem. Lett., 46 (2017) 1769–1772.
  35. M.H. Cui, D. Cui, L. Gao, H.Y. Cheng, A.J. Wang, Analysis of electrode microbial communities in an up-flow bioelectrochemical system treating azo dye wastewater, Electrochim. Acta, 220 (2016) 252–257.
  36. F. Ouyang, M. Ji, H. Zhai, Z. Dong, L. Ye, Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures, Appl. Microbiol. Biotechnol., 100 (2016) 6881–6892.
  37. L. Ye, T. Zhang, Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing, Appl. Microbiol. Biotechnol., 97 (2013) 2681–2690.
  38. D. Wan, Y. Liu, Y. Wang, H. Wang, S. Xiao, Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure, Water Res., 108 (2017) 280–292.
  39. X.C. Quan, Y.P. Quan, K. Tao, Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell, Chem. Eng. J., 210 (2012) 150–156.
  40. R. Hao, C. Meng, J. Li, Impact of operating condition on the denitrifying bacterial community structure in a 3DBER-SAD reactor, J. Ind. Microbiol. Biotechnol., 44 (2017) 9–21.
  41. F. Di Capua, A.M. Lakaniemi, J.A. Puhakka, P.N. Lens, G. Esposito, High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor, Chem. Eng. J., 310 (2017) 282–291.
  42. C. Torrentó, J. Urmeneta, N. Otero, A. Soler, M. Viñas, J. Cama, Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite, Chem. Geol., 287 (2011) 90–101.
  43. B.P. Lomans, R. Maas, R. Luderer, H.J.O. den Camp, A. Pol, C. van der Drift, G.D. Vogels, Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol, Appl. Environ. Microbiol., 65 (1999) 3641–3650.
  44. T.H. Hu, L.M. Whang, P.W.G. Liu, Y.C. Hung, H.W. Chen, L.B. Lin, C.F. Chen, S.K. Chen, S.F. Hsu, W. Shen, Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT–LCD wastewater treatment plant, Bioresour. Technol., 113 (2012) 303–310.
  45. R. Liu, D. Li, Y. Gao, Y. Zhang, S. Wu, R. Ding, A.E.L. Hesham, M. Yang, Microbial diversity in the anaerobic tank of a fullscale produced water treatment plant, Process. Biochem., 45 (2010) 744–751.
  46. S. Jiao, W. Chen, E. Wang, J. Wang, Z. Liu, Y. Li, G. Wei, Microbial succession in response to pollutants in batch-enrichment culture, Sci. Rep., 6 (2016) 21791.
  47. N.A. Zhou, H.L. Gough, Enhanced biological trace organic contaminant removal: a lab-scale demonstration with Bisphenol A-degrading bacteria Sphingobium sp. BiD32, Environ. Sci. Technol., 50 (2016) 8057–8066.
  48. J.L. DiPippo, C.L. Nesbø, H. Dahle, W.F. Doolittle, N.K. Birkland, K.M. Noll, Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid, Int. J. Syst. Evol. Microbiol., 59 (2009) 2991–3000.
  49. Y. Gao, H. Ryu, J.W. Santo Domingo, H.-S. Lee, Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells, Bioresour. Technol., 153 (2014) 245–253.
  50. X. Peng, F. Guo, F. Ju, T. Zhang, Shifts in the microbial community, nitrifiers and denitrifiers in the biofilm in a full-scale rotating biological contactor, Environ. Sci. Technol., 48 (2014) 8044–8052.
  51. P. Li, Y. Wang, J. Zuo, R. Wang, J. Zhao, Y. Du, Nitrogen removal and N2O accumulation during hydrogenotrophic denitrification: influence of environmental factors and microbial community characteristics, Environ. Sci. Technol., 51 (2016) 870–879.
  52. H.P. Bacosa, K. Suto, C. Inoue, Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium, Int. Biodeter. Biodegr., 74 (2012) 109–115.
  53. H. Yun, B. Liang, D.Y. Kong, H.Y. Cheng, Z.L. Li, Y.B. Gu, H.Q. Yin, A.J. Wang, Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants, J. Hazard. Mater., 331 (2017) 280.
  54. X. Wang, Q. Wang, S. Li, W. Li, Degradation pathway and kinetic analysis for p-xylene removal by a novel Pandoraea sp. strain WL1 and its application in a biotrickling filter, J. Hazard. Mater., 288 (2015) 17–24.
  55. G. Li, S. Park, D.-W. Kang, R. Krajmalnik-Brown, B.E. Rittmann, 2, 4, 5-Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation, Environ. Sci. Technol., 45 (2011) 8359–8367.
  56. Y.L. Zhou, H.-F. Wu, Z.S. Yan, H.Y. Cai, H.L. Jiang, The enhanced survival of submerged macrophyte Potamogeton malaianus by sediment microbial fuel cells, Ecol. Eng., 87 (2016) 254–262.