References
- M. Kulkarni, A. Chaudhari, Microbial remediation of nitro-aromatic
compounds: an overview, J. Environ. Manage., 85
(2007) 496–512.
- B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity
and chemicals by using microbial electrochemical technologies,
Science, 337 (2012) 686–690.
- L. Huang, S. Cheng, G. Chen, Bioelectrochemical systems for
efficient recalcitrant wastes treatment, J. Chem. Technol. Biot.,
86 (2011) 481–491.
- Y. Mu, K. Rabaey, R.A. Rozendal, Z. Yuan, J. Keller, Decolorization
of azo dyes in bioelectrochemical systems, Environ. Sci.
Technol., 43 (2009) 5137–5143.
- L. Huang, X. Chai, X. Quan, B.E. Logan, G. Chen, Reductive
dechlorination and mineralization of pentachlorophenol in
biocathode microbial fuel cells, Bioresour. Technol., 111 (2012)
167–174.
- A.J. Wang, D. Cui, H.-Y. Cheng, Y.-Q. Guo, F.-Y. Kong, N.-Q.
Ren, W.-M. Wu, A membrane-free, continuously feeding,
single chamber up-flow biocatalyzed electrolysis reactor for
nitrobenzene reduction, J. Hazard. Mater., 199 (2012) 401–409.
- X. Jiang, J. Shen, Y. Han, S. Lou, W. Han, X. Sun, J. Li, Y. Mu,
L. Wang, Efficient nitro reduction and dechlorination of 2,
4-dinitrochlorobenzene through the integration of bioelectrochemical
system into upflow anaerobic sludge blanket: A comprehensive
study, Water Res., 88 (2016) 257–265.
- J. Shen, C. Feng, Y. Zhang, F. Jia, X. Sun, J. Li, W. Han, L. Wang,
Y. Mu, Bioelectrochemical system for recalcitrant p-nitrophenol
removal, J. Hazard. Mater., 209 (2012) 516–519.
- L. Zhang, X. Jiang, J. Shen, K. Xu, J. Li, X. Sun, W. Han, L. Wang,
Enhanced bioelectrochemical reduction of p-nitrophenols in
the cathode of self-driven microbial fuel cells, RSC Adv., 6
(2016) 29072–29079.
- S. Sevda, T.R. Sreekishnan, N. Pous, Sebastià Puig, Deepak
Pant, Bioelectroremediation of perchlorate and nitrate contaminated
water: A review, Bioresour. Technol., 255 (2018)
331–339.
- M. Sun, D.D. Reible, G.V. Lowry, K.B. Gregory, Effect of applied
voltage, initial concentration, and natural organic matter on
sequential reduction/oxidation of nitrobenzene by graphite
electrodes, Environ. Sci. Technol., 46 (2012) 6174–6181.
- F. Kong, A. Wang, H.-Y. Ren, L. Huang, M. Xu, H. Tao, Improved
dechlorination and mineralization of 4-chlorophenol in a
sequential biocathode-bioanode bioelectrochemical system
with mixed photosynthetic bacteria, Bioresour. Technol., 158
(2014) 32–38.
- C. Zhang, M. Li, G. Liu, H. Luo, R. Zhang, Pyridine degradation
in the microbial fuel cells, J. Hazard. Mater., 172 (2009)
465–471.
- Y. Luo, R. Zhang, G. Liu, J. Li, M. Li, C. Zhang, Electricity generation
from indole and microbial community analysis in the
microbial fuel cell, J. Hazard. Mater., 176 (2010) 759–764.
- P. Pandey, V.N. Shinde, R.L. Deopurkar, S.P. Kale, S.A. Patil,
D. Pant, Recent advances in the use of different substrates in
microbial fuel cells toward wastewater treatment and simultaneous
energy recovery, Appl. Energ., 168 (2016) 706–723.
- X. Jiang, J. Shen, K. Xu, D. Chen, Y. Mu, X. Sun, W. Han, J.
Li, L. Wang, Substantial enhancement of anaerobic pyridine
bio-mineralization by electrical stimulation, Water Res., 130
(2018) 291–299.
- J. Liang, W. Li, H. Zhang, X. Jiang, L. Wang, X. Liu, J. Shen,
Coaggregation mechanism of pyridine-degrading strains for
the acceleration of the aerobic granulation process, Chem. Eng.
J., 338 (2018) 176–183.
- R.H. Liu, W.-W. Li, G.-P. Sheng, Z.-H. Tong, M.H.-W. Lam, H.-Q.
Yu, Self-driven bioelectrochemical mineralization of azobenzene
by coupling cathodic reduction with anodic intermediate
oxidation, Electrochim. Acta, 154 (2015) 294–299.
- H.-Y. Cheng, B. Liang, Y. Mu, M.-H. Cui, K. Li, W.-M. Wu, A.-J.
Wang, Stimulation of oxygen to bioanode for energy recovery
from recalcitrant organic matter aniline in microbial fuel cells
(MFCs), Water Res., 81 (2015) 72–83.
- H. Liu, B.E. Logan, Electricity generation using an air-cathode
single chamber microbial fuel cell in the presence and absence
of a proton exchange membrane, Environ. Sci. Technol., 38
(2004) 4040–4046.
- Y. Zhu, Y. Zhang, H.Q. Ren, J.J. Geng, K. Xu, H. Huang, L.L.
Ding, Physicochemical characteristics and microbial community
evolution of biofilms during the start-up period in
a moving bed biofilm reactor, Bioresour. Technol., 180 (2015)
345–351.
- B. Liang, H. Cheng, J.D. Van Nostrand, J. Ma, H. Yu, D. Kong,
W. Liu, N. Ren, L. Wu, A. Wang, Microbial community structure
and function of nitrobenzene reduction biocathode in
response to carbon source switchover, Water Res., 54 (2014)
137–148.
- B. Liang, H.Y. Cheng, D.Y. Kong, S.H. Gao, F. Sun, D. Cui, F.Y.
Kong, A.J. Zhou, W.Z. Liu, N.Q. Ren, Accelerated reduction of
chlorinated nitroaromatic antibiotic chloramphenicol by biocathode,
Environ. Sci. Technol., 47 (2013) 5353–5361.
- X. Jiang, J. Shen, S. Lou, Y. Mu, N. Wang, W. Han, X. Sun, J. Li,
L. Wang, Comprehensive comparison of bacterial communities
in a membrane-free bioelectrochemical system for removing
different mononitrophenols from wastewater, Bioresour.
Technol., 216 (2016) 645–652.
- J. Wang, B. Jin, L. Cheng, Investigation on redox mechanism
of p-aminophenol in non-aqueous media by FT-IR spectroelectrochemistry,
Electrochim. Acta, 91 (2013) 152–157.
- A.J. Wang, H.Y. Cheng, B. Liang, N.Q. Ren, D. Cui, N. Lin, B.H.
Kim, K. Rabaey, Efficient reduction of nitrobenzene to aniline
with a biocatalyzed cathode, Environ. Sci. Technol., 45 (2011)
10186–10193.
- Y. Song, Theoretical studies on electrochemistry of p-aminophenol,
Spectrochim. Acta A: Molec. Biomolec.
Spectrosc., 67 (2007) 611–618.
- H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu, Electrochemical behavior
and voltammetric determination of 4-aminophenol based
on graphene-chitosan composite film modified glassy carbon
electrode, Electrochim. Acta, 55 (2010) 7102–7108.
- J. Li, Q. Liu, Q. Ji, B. Lai, Degradation of p-nitrophenol (PNP) in
aqueous solution by Fe0–PM–PS system through response surface
methodology (RSM), Appl. Catal. B-Environ., 200 (2017)
633–646.
- B. Lai, Y. Zhang, Z. Chen, P. Yang, Y. Zhou, J. Wang, Removal
of p-nitrophenol (PNP) in aqueous solution by themicron-scale
iron-copper (Fe/Cu) bimetallic particles, Appl. Catal. B-Environ.,
144 (2014) 816– 830.
- S. Fatemi, A.A. Ghoreyshi, M. Rahimnejad, G.N. Darzi, D. Pant,
Sulfide as an alternative electron donor to glucose for power
generation in mediator-less microbial fuel cell, J. Environ. Sci.
Heal. A, 52 (2017) 1150–1157.
- D. Kong, B. Liang, H. Yun, H. Cheng, J. Ma, M. Cui, A. Wang,
N. Ren, Cathodic degradation of antibiotics: Characterization
and pathway analysis, Water Res., 72 (2015) 281–292.
- K. Fricke, F. Harnisch, U. Schröder, On the use of cyclic voltammetry
for the study of anodic electron transfer in microbial
fuel cells, Energy Environ. Sci., 1 (2008) 144–147.
- D. Chen, Y. Mu, J. Shen, L. Wang, Anchoring α-, β-, or γ-MnO2
into polypyrrole wrapping for modifying graphite felt anodes:
the effect of MnO2 type on phenol degradation, Chem. Lett., 46
(2017) 1769–1772.
- M.H. Cui, D. Cui, L. Gao, H.Y. Cheng, A.J. Wang, Analysis of
electrode microbial communities in an up-flow bioelectrochemical
system treating azo dye wastewater, Electrochim.
Acta, 220 (2016) 252–257.
- F. Ouyang, M. Ji, H. Zhai, Z. Dong, L. Ye, Dynamics of the
diversity and structure of the overall and nitrifying microbial
community in activated sludge along gradient copper exposures,
Appl. Microbiol. Biotechnol., 100 (2016) 6881–6892.
- L. Ye, T. Zhang, Bacterial communities in different sections of
a municipal wastewater treatment plant revealed by 16S rDNA
454 pyrosequencing, Appl. Microbiol. Biotechnol., 97 (2013)
2681–2690.
- D. Wan, Y. Liu, Y. Wang, H. Wang, S. Xiao, Simultaneous
bio-autotrophic reduction of perchlorate and nitrate in a sulfur
packed bed reactor: Kinetics and bacterial community structure,
Water Res., 108 (2017) 280–292.
- X.C. Quan, Y.P. Quan, K. Tao, Effect of anode aeration on the
performance and microbial community of an air-cathode
microbial fuel cell, Chem. Eng. J., 210 (2012) 150–156.
- R. Hao, C. Meng, J. Li, Impact of operating condition on the
denitrifying bacterial community structure in a 3DBER-SAD
reactor, J. Ind. Microbiol. Biotechnol., 44 (2017) 9–21.
- F. Di Capua, A.M. Lakaniemi, J.A. Puhakka, P.N. Lens, G.
Esposito, High-rate thiosulfate-driven denitrification at pH
lower than 5 in fluidized-bed reactor, Chem. Eng. J., 310 (2017)
282–291.
- C. Torrentó, J. Urmeneta, N. Otero, A. Soler, M. Viñas, J. Cama,
Enhanced denitrification in groundwater and sediments from
a nitrate-contaminated aquifer after addition of pyrite, Chem.
Geol., 287 (2011) 90–101.
- B.P. Lomans, R. Maas, R. Luderer, H.J.O. den Camp, A. Pol, C.
van der Drift, G.D. Vogels, Isolation and characterization of
Methanomethylovorans hollandica gen. nov., sp. nov., isolated
from freshwater sediment, a methylotrophic methanogen able
to grow on dimethyl sulfide and methanethiol, Appl. Environ.
Microbiol., 65 (1999) 3641–3650.
- T.H. Hu, L.M. Whang, P.W.G. Liu, Y.C. Hung, H.W. Chen,
L.B. Lin, C.F. Chen, S.K. Chen, S.F. Hsu, W. Shen, Biological
treatment of TMAH (tetra-methyl ammonium hydroxide) in
a full-scale TFT–LCD wastewater treatment plant, Bioresour.
Technol., 113 (2012) 303–310.
- R. Liu, D. Li, Y. Gao, Y. Zhang, S. Wu, R. Ding, A.E.L. Hesham,
M. Yang, Microbial diversity in the anaerobic tank of a fullscale
produced water treatment plant, Process. Biochem., 45
(2010) 744–751.
- S. Jiao, W. Chen, E. Wang, J. Wang, Z. Liu, Y. Li, G. Wei, Microbial
succession in response to pollutants in batch-enrichment
culture, Sci. Rep., 6 (2016) 21791.
- N.A. Zhou, H.L. Gough, Enhanced biological trace organic
contaminant removal: a lab-scale demonstration with Bisphenol
A-degrading bacteria Sphingobium sp. BiD32, Environ. Sci.
Technol., 50 (2016) 8057–8066.
- J.L. DiPippo, C.L. Nesbø, H. Dahle, W.F. Doolittle, N.K. Birkland,
K.M. Noll, Kosmotoga olearia gen. nov., sp. nov., a
thermophilic, anaerobic heterotroph isolated from an oil production
fluid, Int. J. Syst. Evol. Microbiol., 59 (2009) 2991–3000.
- Y. Gao, H. Ryu, J.W. Santo Domingo, H.-S. Lee, Syntrophic
interactions between H2-scavenging and anode-respiring
bacteria can improve current density in microbial electrochemical
cells, Bioresour. Technol., 153 (2014) 245–253.
- X. Peng, F. Guo, F. Ju, T. Zhang, Shifts in the microbial community,
nitrifiers and denitrifiers in the biofilm in a full-scale
rotating biological contactor, Environ. Sci. Technol., 48 (2014)
8044–8052.
- P. Li, Y. Wang, J. Zuo, R. Wang, J. Zhao, Y. Du, Nitrogen removal
and N2O accumulation during hydrogenotrophic denitrification:
influence of environmental factors and microbial
community characteristics, Environ. Sci. Technol., 51 (2016)
870–879.
- H.P. Bacosa, K. Suto, C. Inoue, Bacterial community dynamics
during the preferential degradation of aromatic hydrocarbons
by a microbial consortium, Int. Biodeter. Biodegr., 74 (2012)
109–115.
- H. Yun, B. Liang, D.Y. Kong, H.Y. Cheng, Z.L. Li, Y.B. Gu, H.Q.
Yin, A.J. Wang, Polarity inversion of bioanode for biocathodic
reduction of aromatic pollutants, J. Hazard. Mater., 331 (2017)
280.
- X. Wang, Q. Wang, S. Li, W. Li, Degradation pathway and
kinetic analysis for p-xylene removal by a novel Pandoraea sp.
strain WL1 and its application in a biotrickling filter, J. Hazard.
Mater., 288 (2015) 17–24.
- G. Li, S. Park, D.-W. Kang, R. Krajmalnik-Brown, B.E. Rittmann,
2, 4, 5-Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and
biodegradation, Environ. Sci. Technol., 45 (2011) 8359–8367.
- Y.L. Zhou, H.-F. Wu, Z.S. Yan, H.Y. Cai, H.L. Jiang, The
enhanced survival of submerged macrophyte Potamogeton
malaianus by sediment microbial fuel cells, Ecol. Eng., 87
(2016) 254–262.