References

  1. Z.X. Pei, L.Y. Ding, M.L. Lu, Z.H. Fan, S.X. Weng, J. Hu, P. Liu, Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability, J. Phys. Chem. C., 118 (2014) 9570–9577.
  2. P.C. Patel, S. Ghosh, P.C. Srivastava, Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles, Mater. Res. Bull., 81 (2016) 85–92.
  3. R.Y. Yang, X.X. Yan, Y.M. Li, X.H. Zhang, J.H. Chen, Nitrogen-doped porous carbon-ZnO nanopolyhedra derived from ZIF-8: New materials for photo electrochemical biosensors, ACS Appl. Mater. Interfaces, 9 (2017) 42482–42491.
  4. P.Q. Jia, H.W. Tan, K.R. Liu, W. Gao, Enhanced photocatalytic performance of ZnO/bone char composites, Mater. Lett., 205 (2017) 233–235.
  5. Y.L. Chen, L.J. Wang, W.Z. Wang, M.S. Cao, Synthesis of Se-doped ZnO nanoplates with enhanced photo electrochemical and photocatalytic properties, Mater. Chem. Phys., 199 (2017) 416–423.
  6. C. Bojer, J. Schöbel, T. Martin, M. Ertl, H. Schmalz, J. Breu, Clinical wastewater treatment: Photochemical removal of an anionicantibiotic (ciprofloxacin) by mesostructured high aspect ratio ZnO nanotubes, Appl. Catal. B: Environ., 204 (2017) 561–565.
  7. S.S.P. Selvin, A.G. Kumar, L. Sarala, R. Rajaram, A. Sathiyan, J.P. Merlin, I.S. Lydia, Photocatalytic degradation of rhodamine B using zinc oxide activated charcoal polyaniline nanocomposite and its survival assessment using aquatic animal model, ACS Sustainable Chem. Eng., 6 (2018) 258–267.
  8. H. Liu, M. Li, J. Yang, C. Hu, J. Shang, H. Zhai, In situ construction of conjugated polymer P3HT coupled hierarchical ZnO composite with Z-scheme enhanced visible-light photocatalytic activity, Mater. Res. Bull., 106 (2018) 19–27.
  9. M.Y.N. Núñez, A.M. Cruz, Nitric oxide removal by action of ZnO photo catalyst hydrothermally synthesized in presence of EDTA, Mat. Sci. Semicon. Proc., 81 (2018) 94–101.
  10. P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications, Appl. Surf. Sci., 448 (2018) 481–488.
  11. E. Mendoza-Mendoza, A.G. Nuñez-Briones, L.A. García-Cerda, R.D. Peralta-Rodríguez, A.J. Montes-Luna, One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity, Ceram. Int., 44 (2018) 6176–6180.
  12. T.P. Chou, Q.F. Zhang, G.E. Fryxell, G.Z. Cao, Hierarchically structured ZnO film for dye sensitized solar cells with enhanced energy conversion efficiency, Adv. Mater., 19 (2007) 2588–2592.
  13. T. Marimuthu, N. Anandhan, Growth and characterization of ZnO nanostructure on TiO2-ZnO films as a light scattering layer for dye sensitized solar cells, Mater. Res. Bull., 95 (2017) 616–624.
  14. L. Pan, T. Muhammad, L. Ma, Z.F. Huang, S.B. Wang, L. Wang, J.J. Zou, X.W. Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photo catalysis, Appl. Catal. B: Environ., 189 (2016) 181–191.
  15. N. Kumaresan, K. Ramamurthi, R.R. Babu, K. Sethuraman, S.M. Babu, Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity, Appl. Surf. Sci., 418 (2017) 138–146.
  16. H. Wang, X.Q. Qiu, W.F. Liu, D.J. Yang, Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity, Appl. Surf. Sci., 426 (2017) 206–216.
  17. Y.H. Lu, W.H. Lin, C.Y. Yang, Y.H. Chiu, Y.C. Pu, M.H. Lee, Y.C. Tseng, Y.J. Hsu, A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photo activities, Nanoscale, 6 (2014) 8796–8803.
  18. Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu, Enhancement of photo current and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy. Environ. Sci., 4 (2011) 2922–2929.
  19. K. Bramhaiah, V.N. Singh, N.S. John, Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles: enhanced photo degradation rates in relation to their composition and morphology, Phys. Chem. Chem. Phys., 18 (2016)1478–1486.
  20. C.M. Chou, Y.C. Chang, P.S. Lin, F.K. Liu, Growth of Cu-doped ZnO nanowires or ZnO-CuO nanowires on the same brass foil with high performance photocatalytic activity and stability, Mater. Chem. Phys., 201 (2017) 18–25.
  21. J. Wang, Z. Yang, X.X. Gao, W.Q. Yao, W.Q. Wei, X.J. Chen, R.L. Zong, Y.F. Zhu, Core-shell g-C3N4@ZnO composites as photo anodes with double synergistic effects for enhanced visible- light photo electro catalytic activities, Appl. Catal. B: Environ., 217 (2017) 169–180.
  22. K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloy. Compd., 727 (2017) 792–820.
  23. G.Q. Li, Z.G. Yi, H.T. Wang, C.H. Jia, W.F. Zhang, Factors impacted on anisotropic photocatalytic oxidization activity of ZnO: Surface band bending, surface free energy and Surface Conductance, Appl. Catal. B: Environ., 158–159 (2014) 280–285.
  24. Y.J. Si, H.H. Liu, N.T. Li, J.B. Zhong, J.Z. Li, D.M. Ma, SDBS-assisted hydrothermal treatment of TiO2 with improved photocatalytic activity, Mater. Lett., 212 (2018) 147–150.
  25. H. Wang, X.Q. Qiu, W.F. Liu, D.J. Yang, Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity, Appl. Surf. Sci., 426 (2017) 206–216.
  26. Q. Yang, J.B. Zhong, J.Z. Li, J.F. Chen, Z. Xiang, T. Wang, M.J. Li, Photo-induced charge separation properties of NiO/Bi2O3 heterojunctions with efficient simulated solar-driven photocatalytic performance, Curr. Appl. Phys., 17 (2017) 484–487.
  27. J.B. Zhong, J.Z. Li, S.T. Huang, C.Z. Cheng, W. Yuan, M.J. Li, J. Ding, Improved solar-driven photocatalytic performance of Ag2CO3/(BiO)2CO3 prepared in-situ, Mater. Res. Bull., 77 (2016) 185–189.
  28. S.T. Huang, J.B. Zhong, J.Z. Li, J.F. Chen, Z. Xiang, W. Hu, M.J. Li, Z-scheme TiO2/g-C3N4 composites with improved solardriven photocatalytic performance deriving from remarkably efficient separation of photo-generated charge pairs, Mater. Res. Bull., 84 (2016) 65–70.
  29. X.W. Zheng, Q. Yang, S.T. Huang, J.B. Zhong, J.Z. Li, R.H. Yang, Y.Y. Zhang, Enhanced separation efficiency of photo-induced charge pairs and sunlight-driven photocatalytic performance of TiO2 prepared with the assistance of NH4Cl, J. Sol-Gel Sci. Technol., 83 (2017) 174–180.
  30. J.F. Chen, J.B. Zhong, J.Z. Li, S.T. Huang, M.J. Li, Enhanced photocatalytic activity of C-N-S-tridoped TiO2 towards degradation of methyl orange and phenol, Desal. Water Treat., 75 (2017) 195–201.
  31. J.B. Zhong, J.Z. Li, Y. Lu, X.Y. He, J. Zeng, W. Hu, Y.C. Shen, Fabrication of Bi3+-doped ZnO with enhanced photocatalytic performance, Appl. Surf. Sci., 258 (2012) 4929–4933.
  32. J.Z. Li, J.B. Zhong, W. Hu, Y. Lu, J. Zeng, Y.C. Shen, Fabrication of tin-doped zinc oxide by parallel flow co-precipitation with enhanced photocatalytic performance, Mat. Sci. Semicon. Proc., 16 (2013) 143–148.
  33. C.J. Chang, T.L. Yang, Y.C. Weng, Synthesis and characterization of Cr-doped ZnO nanorod-array photo catalysts with improved activity, J. Solid State Chem., 214 (2014) 101–107.
  34. S.H. Hsieh, J.M. Ting, Characterization and photocatalytic performance of ternary Cu-doped ZnO/gtraphene materials, Appl. Surf. Sci., 427 (2018) 465–475.
  35. Z. Xiang, J.B. Zhong, S.T. Huang, J.Z. Li, J.F. Chen, T. Wang, M.J. Li, P. Wang, Efficient charge separation of Ag2CO3/ZnO composites prepared by a facile precipitation approach and its dependence on loading content of Ag2CO3, Mat. Sci. Semicon. Proc., 52 (2016) 62–67.
  36. L.H. Xu, Y. Zhou, Z.J. Wu, G.G. Zheng, J.J. He, Y.J. Zhou, Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO, J. Phys. Chem. Solids, 106 (2017) 29–36.
  37. Q. Qi, S.J. Liu, X. Li, C.L. Kong, Z.Y. Guo, L. Chen, In situ fabrication of ZnO@N-doped nanoporous carbon core-shell heterostructures with high photocatalytic and adsorption capacity by a calcination of ZnO@MOF strategy, J. Solid State Chem., 255 (2017) 108–114.
  38. W.W. Yu, T.G. Liu, S.Y. Cao, C. Wang, C.S. Chen, Constructing MnO2/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity, J. Solid State Chem., 239 (2016) 131–138.
  39. H. Wang, X. Liu, S.L. Wang, L. Li, Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photo electrochemical activity, Appl. Catal. B: Environ., 222 (2018) 209–218.
  40. L.H. Yu, W. Chen, D.Z. Li, J.B. Wang, Y. Shao, M. He, P. Wang, X.Z. Zheng Inhibition of photo corrosion and photo activity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure, Appl. Catal. B: Environ., 164 (2015) 453–461.
  41. A.D. Mauro, M.E. Fragalà, V. Privitera, G. Impellizzeri, ZnO for application in photo catalysis: From thin films to nanostructures, Mat. Sci. Semicon. Proc., 69 (2017) 44–51.
  42. N. Kumaresan, K. Ramamurthi, R.R. Babu, K. Sethuraman, S.M. Babu, Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity, Appl. Surf. Sci., 418 (2017) 138–146.
  43. G. Ramakrishna, A. Das, H.N. Ghosh, Effect of surface modification on back electron transfer dynamics of dibromo fluorescein sensitized TiO2 nanoparticles, Langmuir, 20 (2004) 1430–1435.
  44. J.C. Yu, J.G. Yu, J.C. Zhao, Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment, Appl. Catal. B: Environ., 36 (2002) 31–43.
  45. W. Fei, H. Yang, Y.C. Zhang, Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires, Mat. Sci. Semicon. Proc., 73 (2018) 58–66.
  46. L.J. Di, H. Yang, T. Xian, X.J. Chen, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for Rhodamine B decolorization, Mater., 10 (2017) 1118–1128.
  47. L.W. Chen, W.C. Sheng, L.H. Gan, Preparation of TiO2 function film and factors affecting its photocatalytic activity, Funct. Mater., 33 (2002) 246–249.
  48. B. Shirdel, M.A. Behnajady, Sol-gel synthesis of Ba-doped ZnO nanoparticles with enhanced photocatalytic activity in degrading Rhodamine B under UV-A irradiation, Optik, 147 (2017) 143–150.
  49. J.B. Zhong, J.Z. Li, F.M. Feng, Y. Lu, J. Zeng, W. Hu, Z. Tang, Improved photocatalytic performance of SiO2-TiO2 prepared with the assistance of SDBS, J. Mol. Catal. A: Chem., 357 (2012) 101–105.
  50. L.Q. Ye, J.Y. Liu, Z. Jiang, T.Y. Peng, L. Zan, Facets coupling of BiOBr-g-C3N4 composite photo catalyst for enhanced visible-light-driven photocatalytic activity, Appl. Cataly. B: Environ., 142–143 (2013) 1–7.
  51. X.L. Liu, J.B. Zhong, J.Z. Li, S.T. Huang, W. Song, PEG-assisted hydrothermal synthesis of BiOCl with enhanced photocatalytic performance, Appl. Phys., A 119 (2015) 1203–1208.
  52. M. Yang, Q. Yang, J.B. Zhong, J.Z. Li, S.T. Huang, X.J. Li, PVA-assisted hydrothermal preparation of BiOF with remarkably enhanced photocatalytic performance, Mater. Lett., 201 (2017) 35–38.
  53. S.T. Huang, J.F. Chen, J.B. Zhong, J.Z. Li, W. Hu, M.J. Li, Enhanced photocatalytic performance of Ag/AgCl/SnO2 originating from efficient formation of •O2, Mater. Chem. Phys. 201 (2017) 35–41.
  54. X.W. Zheng, H.H. Liu, J.B. Zhong, S.T. Huang, J.Z. Li, D.M. Ma, Remarkably enhanced sunlight-driven photocatalytic performance of TiO2 by facilely modulating the surface property, Mat. Sci. Semicon. Proc., 74 (2018) 109–115.
  55. J.B. Zhong, J.Z. Li, Z.H. Xiao, W. Hu, X.B. Zhou, X.W. Zheng, Improved photocatalytic performance of ZnO prepared by solgel method with the assistance of CTAB, Mater. Lett., 91 (2013) 301–303.
  56. L. Kronik, Y. Shapira, Surface photo voltage phenomena: theory, experiment and application, Surf. Sci. Rep., 254 (1999) 1–205.
  57. X. Zhao, H. Yang, Z. Cui, R. Li, W. Feng, Enhanced photocatalytic performance of Ag-Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method, Mater. Technol., 32 (2017) 870–880.
  58. L.Q. Ye, K.J. Deng, F. Xu, L.H. Tian, T.Y. Peng, L. Zan, Increasing visible-light absorption for photocatalysis with black BiOCl, Phys. Chem. Chem. Phys., 14 (2011) 82–85.
  59. W.Z. Wang, G.H. Wang, X.S. Wang, Y.J. Zhan, Y.K. Liu, C.L. Zheng, Synthesis and characterization of Cu2O nanowires by a novel reduction route, Adv. Mater., 14 (2002) 67–69.
  60. W. Sun, W.D. Sun, Y.J. Zhuo, Y. Chu, Facile synthesis of Cu2O nanocube/polycarbazole composites and their high visible-light photocatalytic properties, J. Solid State Chem., 184 (2011) 1638–1643.
  61. X.D. Su, J.Z. Zhao, Y.L. Li, Y.C. Zhu, X.K. Ma, F. Sun, Z.C. Wang, Solution synthesis of Cu2O/TiO2 core-shell nanocomposites, Colloids Surf., A 349 (2009) 151–155.
  62. G. Li, D. Zhang, J.C. Yu, Thermally stable ordered mesoporous CeO2/TiO2 visible-light photo catalysts, Phys. Chem. Chem. Phys., 11 (2009) 3775–3782.
  63. J.X. Shu, Z.H. Wang, Y.J. Huang, N. Huang, C.G. Ren, W. Zhang, Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: kinetics, isotherms, thermodynamics and mechanism analysis, J. Alloy. Compd. 633 (2015) 338–346.
  64. J.D. Ye, S.L. Gu, F. Qin, S.M. Zhu, S.M. Liu, X. Zhou, W. Liu, L.Q. Hu, R. Zhang, Y. Shi, Y.D. Zheng, Y.D. Ye, MOCVD growth and properties of ZnO films using dimethylzinc and oxygen, Appl. Phys. A. Mater., 81 (2005) 809–812.
  65. K. Ebitani, H. Konno, T. Tanaka, H. Hattori, In-situ XPS study of zirconium oxide promoted by platinum and sulfate ion, J. Catal., 135 (1992) 60–67.
  66. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photo catalysis, Chem. Rev., 95 (1995) 69–96.
  67. J.F. Chen, J.B. Zhong, J.Z. Li, J. Zeng, S.T. Huang, L. Dou, Photo induced charge separation and simulated solar-driven photocatalytic performance of C-N-co-doped TiO2 prepared by solgel method, J. Sol-Gel Sci. Technol., 76 (2015) 332–340.