References

  1. A. Aldawsari, M.A. Khan, B.H. Hameed, A.A. Alqadami, M.R. Siddiqui, Mercerized mesoporous date pit activated carbon – A novel adsorbent to sequester potentially toxic divalent heavy metals from water, PLOS One, 12 (2017) e0184493.
  2. B. Michalke, S. Halbachb, V. Nischwitza, Speciation and toxicological relevance of manganese in humans, J. Env. Monit., 9 (2007) 650–656
  3. P. Roccaro, C. Barone, G. Mancini, F.G.A. Vagliasindi, Removal of manganese from water supplies intents for human consumption: a case study, Desalination, 210 (2007) 205–214.
  4. B. Michalke, K. Fernsebner, New insights into manganese toxicity and speciation, J. Trace Elem. Med. Biol., 28 (2014) 106– 116.
  5. Guidelines for Drinking-Water Quality, Recommendations, 4th ed.,World Health Organization, Geneva 2011.
  6. Z. Teng, J.Y. Huang, K. Fujita, S. Takizawa, Manganese removal by hollow fiber microfilter. Membrane separation for drinking water, Desalination, 139 (2001) 411–418.
  7. L. Ma, Y. Peng, B. Wu, D. Lei, H. Xu, Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution, Chem. Eng. J., 225 (2013) 59–67.
  8. US EPA, Effluent guidelines program plan, 2008, http://www.epa.gov/guide/304m/2008.
  9. T. Sata, Ion exchange membranes: preparation, characterization, modification and application, R. Soc. Chem., (2004) 1–6.
  10. G. Borbely, E. Nagy, Removal of zinc and nickel ions by complexation membrane filtration process from industrial wastewater, Desalination, 240 (2009) 218–226.
  11. M.Y. Chang, R.S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay, J Colloid Interface Sci., 278 (2004) 18–25.
  12. R. Koivula, J. Lehto, L. Pajo, T. Gale, H. Leinonen, Purification of metal plating rinse waters with chelating ion exchangers, Hydrometallurgy, 56 (2000) 93–108.
  13. S.H. Lin, S.L. Lai, H.G. Leu, Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process, J. Hazard. Mater., 76 (2000) 139–153.
  14. K.A. Matis, N.K. Lazaridis, A.I. Zouboulis, G.P. Gallios, V. Mavrov, A hybrid flotation microfiltration process for metal ions recovery, J. Membr. Sci., 247 (2005) 29–35.
  15. I.H. Alsohaimi, M.A. Khan, Z.A. Alothman, M.R. Khan, M. Kumar, A.M. Almahri, Synthesis, characterization, and application of Fe-CNTs nanocomposite for BrO3 remediation from water samples, J. Ind. Eng. Chem., 26 (2015) 218–225.
  16. A. Denizli, G. Özkan, M.Y. Arica, Preparation and characterization ofmagnetic polymethylmethacrylate microbeads carrying ethylene diamine for removal of Cu(II), Pb(II), and Hg(II) from aqueous solutions, J. Appl. Polym. Sci., 78 (2000) 81–89.
  17. J.Y. Tseng, C.Y. Chang, Y.H. Chen, C.F. Chang, P.C. Chiang, Synthesis of microsize magnetic polymer adsorbent and its application for the removal of Cu(II) ion, Colloids Surf. A, 295 (2007) 209–216.
  18. S. Bassaid, M. Chaib, A. Bouguelia, M. Trari, Elaboration and characterization of poly (acrylic acid-co-crotonic acid) copolymers: application to extraction of metal cations Pb(II), Cd(II) and Hg(II) by complexation in aqueous media, React. Funct. Polym., 68 (2008) 483–491.
  19. O. Moradi, M. Aghaie, K. Zarea, M. Monajjemi, H. Aghaiea, The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution, J. Hazard. Mater., 170 (2009) 673–679.
  20. J.H. Qu, Research progress of novel adsorption processes in water purification: a review, J. Environ. Sci., 20 (2008) 1–13.
  21. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal: a review, J. Environ. Manage., 90 (2009) 2313–2342.
  22. W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by Chitosan composites: a review, Carbohydr. Polym., 83 (2011) 1446–1456.
  23. B.J. Pan, B.C. Pan, W.M. Zhang, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal, Chem. Eng. J., 151 (2009) 19–29.
  24. T.F. De Oliveira, E.S. Ribeiro, M.G. Segatelli, C.R.T. Tarley, Enhanced sorption of Mn2+ ions from aqueous medium by inserting protoporphyrin as a pendant group in poly(vinylpyridine) network, Chem. Eng. J., 221 (2013) 275–282.
  25. H.A. Panahi, M.S. Zadeh, S. Tavangari, E. Moniri, J. Ghassemi, Nickel adsorption from environmental samples by ion imprinted aniline-formaldehyde polymer, Iran. J. Chem. Chem. Eng., 31 (2012) 35–44.
  26. N.T. Tavengwa, E. Cukrowska, L. Chimuka, Modeling of adsorption isotherms and kinetics of uranium sorption by magnetic ion imprinted polymers, Toxicol. Environ. Chem., 98 (2016) 1–12.
  27. M. Saraji, H. Yousefi, Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples, J. Hazard. Mater., 167 (2009) 1152–1157.
  28. B. Pan, H. Qiu, B. Pan, G. Nie, L. Xiao, L. Lv, W. Zhang, Q. Zhang, S. Zheng, Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study, water research, 44 ( 2010 ) 815–824.
  29. F. Ge, M. Li, H. Ye, B. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles, J. Hazard. Mater., 211–212 (2012) 366–372.
  30. C. M. Iesan, C. Capat, F. Ruta, I. Udrea, Characterization of hybrid inorganic/organic polymer-type materials used for arsenic removal from drinking water, React Funct Polym., 68 (2008) 1578–1586.
  31. J.S. Liu, Y. Ma, T.W. Xu, G.Q. Shao, Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water, J. Hazard. Mater., 178 (2010) 1021–1029.
  32. Q. Dong, J. Liu, L. Song, G. Shao, Novel zwitterionic inorganic–organic hybrids: Synthesis of hybrid adsorbents and their applications for Cu2+ removal, J. Hazard. Mater., 186 (2011) 1335–1342.
  33. H. Sadegh,, R.S. Ghoshekandi, A. Masjedi, Z, Mahmoodi, M. Kazemi, A review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions. Int. J. Nano Dimens. 7(2) (2016) 109
  34. J. Theron, J, Walker, T. Cloete: Nanotechnology and water treatment: applications and emerging opportunities. Crit. Rev. Microbiol. 34(1) (2008) 43–69.
  35. E.A. Dil, M, Ghaedi, A. Asfaram: The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrason. Sonochem. 34 (2017) 792–802.
  36. J.C. Crittenden, K. Vaitheeswaran, D.W. Hand, E.W. Howe, E.M. Aieta, C.H. Tate, M.J. Mcguire, M.K. Davis, Water Res., 27 (1993) 715.
  37. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, Wiley, (2012).
  38. I.H. Alsohaimi, S.M. Wabaidur, M.Kumar, M.A. Khan, Z.A. Alothman, M.A. Abdalla, Synthesis, characterization of PMDA/TMSPEDA hybrid nano-composite and its applications as an adsorbent for the removal of bivalent heavy metals ions, Chem. Eng. J., 270 (2015) 9–21.
  39. J. Liu, Y. Ma, T.W. Xu, G.Q. Shao, Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water, J. Hazard. Mater., 178 (2010) 1021–1029.
  40. S. Prakash, M. Kumar, B.P. Tripathi, V.K. Shahi, Sol-gel derived poly(vinyl alcohol)-3-(2-aminoethylamino) propyltrimethoxysilane: Cross-linked organic-inorganic hybrid beads for the removal of Pb(II) from aqueous solution, Chem. Eng. J., 162 (2010) 28–36.
  41. Y. Ren, H.A. Abbood, F.B. He, H. Peng, K.X. Huang, Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption, Chem. Eng. J., 226 (2013) 300–311.
  42. A. Ozer, G. Akkaya, M. Turabik, Biosorption of Acid Red 274. (AR 274) on Enteromorpha prolifera in a batch system, J. Hazard. Mater., B126 (2005) 119–127.
  43. I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40 (1916) 1361–1403.
  44. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  45. M.U. Khobragade, Anjali Pal. Fixed-bed column study on removal of Mn(II), Ni(II) and Cu(II) from aqueous solution by surfactant bilayer supported alumina. Sep. Sci. Technol., 51 (2016) 1287–1298.
  46. S. Bao, W. Hawker, J. Vaughan. scandium loading on chelating and solvent impregnated resin from sulfate solution. Solvent Extr. Ion Exch,, 36 (2018) 100–113.
  47. A.A. Bakr, N.A. Sayed, T.M. Salama, I. Othman Ali, R.R. Abdel Gayed, N.A. Negm. Potential of Mg–Zn–Al layered double hydroxide (LDH)/montmorillonite nanocomposite in remediation of wastewater containing manganese ions. Res. Chem. Intermed., 44(2018) 389–405.
  48. V.E. Badillo-Almaraz, C. López-Reyes, J.M. Soriano-Rodríguez. Equilibrium studies and modeling on the removal of 56Mn(II) by alumina and kaolinite. J. Radioanal. Nucl. Chem., 316 (2018) 571–578.
  49. E. Erdema, N. Karapinarb, R. Donata, The removal of heavy metal cations by natural zeolites, J. Colloid Interf. Sci., 280 (2004) 309–314.
  50. M.G. da Fonseca, M.M. de Oliveira, L. N.H. Arakaki, Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral. J. Hazard. Mater., B137 (2006) 288–292.
  51. A.K. Meenaa, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nagar, Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater., B122 (2005) 161–170.
  52. S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  53. Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.