References

  1. A. Urbanowska, M. Kabsch-Korbutowicz, Characteristics of natural organic matter removed from water along with its treatment, Environ. Protect. Eng., 42 (2016) 183–195.
  2. B. Bazrafkan, Q. Wei, R. Fabris, C.W.K. Chow, J. Leeuwen, D. Wang, M. Drikas, Assessment of a new combined fractionation technique for characterization of the natural organic matter in the coagulation process, Desal. Water Treat., 48 (2012) 252–260.
  3. J.A. Leenheer, J.P. Croué, Characterizing aquatic dissolved organic matter, Environ Sci. Technol., 37 (2003) 18–26.
  4. A. Ziółkowska, The role of humic substances in detoxification process of the environment, Environ. Protect. Nat. Resour., 26 (2015) 1–5.
  5. I. Krupińska, Effect of organic substances on the efficiency of Fe(II) to Fe(III) oxidation and removal of iron compounds from groundwater in the sedimentation process, Civil Environ. Eng. Reports, 26 (2017) 15–29.
  6. R. Albrektiene, M. Rimeika, R. Grazeniene, Organic fractions and metal-organic complexes in the groundwater. The 9th International Conference “Environmental Engineering” 22–23 May 2014, Vilnius, Lithuania.
  7. M. De Julio, L. Di Bernardo, T.S. De Julio, S.X. de Campos, E.M. Vieira, Removal of humic substances with different apparent molecular sizes using Fenton’s reagent, Desal. Water Treat., 46 (2012) 139–148.
  8. D.J. Pernitsky, J.K. Edzwald, Solubility of polyaluminium coagulants, J. Water Supply: Res. Technol. – AQUA 52 (2003) 395–406.
  9. A. Matilainen , E.T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar, M. Sillanpää, An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment, Chemosphere, 83 (2011) 1431–1442.
  10. M. Kabsch-Korbutowicz, A. Urbanowska, Comparison of polymeric and ceramic ultra filtration membranes for separation of natural organic matter from water, Environ. Protect. Eng., 36 (2010) 125–135.
  11. Regulation of the Minister of Health dated December 7, 2017 amending the regulation on the quality of drinking water mean for human consumption.
  12. K. Choi, B. Dempsey, In-line coagulation with low-pressure membrane filtration, Water Res., 38 (2004) 4271–4281.
  13. M. Kabsch-Korbutowicz, J. Wiśniewski, S. Łakomska, A. Urbanowska, Application of UF, NF and ED in natural organic matter removal from ion-exchange spent regenerant brine, Desalination, 280 (2011) 428–431.
  14. M. Kabsch-Korbutowicz, A. Urbanowska, Effect of ion-exchange for NOM removal in water treatment with ceramic membranes ultra filtration, Membr. Water Treat., 3 (2012) 211–219.
  15. A. Urbanowska, M. Kabsch-Korbutowicz, Influence of operating conditions on performance of ceramic membrane used for water treatment, Chem. Pap., 68 (2014) 190–196.
  16. A. Matilainen, M. Vepsäläinen, M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: a review, Adv. Colloid Interfac., 159 (2010) 189–197.
  17. T. Tuhkanen, A. Ketonen, L. Gilberg, J. Jahela, Removal of different size fractions of natural organic matter in drinking water by optimized coagulation, Chem. Water Wastewater Treat., VII (2004) 201–208.
  18. B. Aftab, J. Hur, Fast tracking the molecular weight changes of humic substances in coagulation/flocculation processes via fluorescence EEM-PARAFA, Chemosphere, 178 (2017) 317–324.
  19. B. Libecki, J. Dziejowski, Optimization of humic acids coagulation with aluminum and iron (III) salts, Pol. J. Environ. Stud., 17 (2008) 397–403.
  20. W. Cheng, F. Ghi, A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method, Water Res., 36 (2002) 4583–4591.
  21. D. Ghernaout, B. Ghernaout, A. Kellil, Natural organic matter removal and enhanced coagulation as a link between coagulation and electro coagulation, Desal. Water Treat., 2 (2009) 203–222.
  22. Y.L. Cheng, R.J. Wong, J.Ch. Te Lin, Ch. Huang, D.J. Lee, J.Y. Lai, Pre-Treatment of natural organic matters containing raw water using coagulation, Sep. Sci. Technol., 45 (2010) 911–919.
  23. L. Dąbrowska, Removal of organic matter from surface water using coagulants with various basicity, J. Ecol. Eng., 17 (2016) 66–72.
  24. W. Wang, H. Yang, X. Wang, J. Jiang, W. Zhu, Effects of fulvic acid and humic acid on aluminum speciation in drinking water, J. Environ. Sci., 22 (2010) 211–217.
  25. I. Krupińska, The influence of aeration and type of coagulant on effectiveness in removing pollutants from groundwater in the process of coagulation, Chem. Biochem. Eng. Q., 30 (2016) 465–475.
  26. I. Krupińska, The impact of potassium manganate (VII) on the effectiveness of coagulation in the removal of iron and manganese from groundwater with an increased content of organic substances, Civil Environ. Eng. Reports, 27 (2017) 29–41.
  27. I. Krupińska, The impact of the oxidising agent type and coagulant type on the effectiveness of coagulation in the removal of pollutants from underground water with an increased content of organic substances, J. Environ. Eng. Landsc., 24 (2016) 70–78.
  28. A. Nowacka, M.W. Makuła, B. Macherzyński, Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants, Desal. Water Treat., 52 (2014) 3843–3851.
  29. A. Nowacka, M. Włodarczyk-Makuła, B. Tchórzewska-Cieślak, J. Rak, The ability to remove the priority PAHs from water during coagulation process including risk assessment Desal. Water Treat., 57 (2016) 1297–1309.
  30. E. Sogaard, Production of the coagulation agent PAX-14. Contents of polyaluminium chloride compounds, Chem. Water Wastewater Treat., VII (2002) 3–16.
  31. M. Sillanpää, M. Ch. Ncibi, A. Matilainen, M. Vepsäläinen, Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review, Chemosphere, 190 (2018) 54–71.
  32. J.M. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid. Interfac., 100 (2003) 475–502.
  33. S. Hussain, J. van Leeuwen, Ch. Chow, S. Beecham, M. Kamruzzaman, D. Wang, M. Drikas, R. Aryal, Removal of organic contaminants from river and reservoir waters by three different aluminum-based metal salts: Coagulation adsorption and kinetics studies, Chem. Eng. J., 225 (2013) 394–405.
  34. D. Pernitsky, J. Edzwald, Selection of alum and polyaluminum coagulants: Principles and applications, J. Water Supply Res. T., 55 (2006) 121–141.
  35. W. Zhou, B. Gao, Q. Yue, L. Liu, Y. Wang, Al-Ferron kinetics and quantitative calculation of Al(III) species in polyaluminum chloride coagulants, Colloid Surface A., 278 (2006) 235–240.
  36. J.M. Sieliechi, G.J. Kayem, I. Sandu, Effect of water treatment residuals (aluminium and iron ions) on human health and drinking water distribution systems, Int. J. Conserv. Sci., 1 (2010) 175–182.
  37. J. Piekutin, I. Skoczko, K. Ignatowicz, Use of integrated process of petroleum removal from water, Desal. Water Treat., 57 (2016) 1593–1597.
  38. J. Lin, Ch. Huang, B. Dempsey, J.Y. Hu, Fate of hydrolyzed Al species in humic acid coagulation, Water Res., 56 (2014) 314–324.
  39. M. Wolska, Removal of precursors of chlorinated organic compounds in selected water treatment processes, Desal. Water Treat., 52 (2013) 3938–3946.
  40. T. Riedel, H. Biester, Molecular fractionation of dissolved organic matter with metal salts, Environ. Sci. Technol., 46 (2012) 4419–4426.
  41. H. Tang, Z. Luan, Differences in coagulation efficiencies between PACl and PICl, J. AWWA, 1 (2003) 79–86.
  42. D. Wang, H. Tang, J. Gregory, Relative importance of charge neutralization and precipitation on coagulation of kaolin with PACl: effect of sulfate ion, Environ. Sci. Technol., 36 (2002) 1815–1820.
  43. Manufacturer’s specification (Coagulants: iron (III) sulphate( VI), aluminium sulphate (VI), PAX XL19H).
  44. Manufacturer’s specification (Coagulant: Flokor 1A ).