References
- J. Makinia, S.A. Wells, Evaluation of empirical formulae for
estimation of the longitudinal dispersion in activated sludge
reactors, Water Res., 39 (2005) 1533–1542.
- B. De Clercq, F. Coen, B. Vanderhaegen, P.A. Vanrolleghem,
Calibrating simple models for mixing and flow propagation in
waste water treatment plants, Water Sci. Technol., 39 (4) (1999)
61–69.
- Y. Gao, F.J. Muzzio, M.G. Ierapetritou, A review of the residence
time distribution (RTD) applications in solid unit operations,
Powder Technol., 228 (2012) 416–423.
- D.C. de Freitas, F.H. Passig, C. Kreutz, K.Q. de Carvalho, E.
J. Arantes, S.D. Gomes, Effect of hydraulic retention time on
hydrodynamic behavior of anaerobic-aerobic fixed bed reactor
treating cattle slaughterhouse effluent, Acta Sci. Techol., 39 (4)
(2017) 469–476.
- O.N. Manjrekar, Y. Sun, L. He, Y.J. Tang, M.P. Dudukovic,
Hydrodynamics and mass transfer coefficients in a bubble column
photo-bioreactor, Chem. Eng. Sci., 168 (2017) 55–66.
- J.A. Jáuregui-Jáuregui, H.O. Méndez-Acosta, V. González-Álvarez,
R. Snell-Castro, V. Alcaraz-González, J.J. Godon, Anaerobic
treatment of tequila vinasses under seasonal operating
conditions: Start-up, normal operation and restart-up after a
long stop and starvation period, Bioresour. Technol., 168 (2014)
33–40.
- M. Mulas, S. Tronci, F. Corona, H. Haimi, P. Lindell, M. Heinonen,
R. Vahala, R. Baratti, Predictive control of an activated
sludge process: An application to the Viikinmäki wastewater
treatment plant, J. Process Control, 35 (2015) 89–100.
- M. Rajasimman, S.V. Babu, N. Rajamohan, Biodegradation of
textile dyeing industry wastewater using modified anaerobic
sequential batch reactor – Start-up, parameter optimization
and performance analysis, J. Tai. Inst. Chem. Eng., 72 (2017)
171–181.
- X. Tang, Y. Guo, B. Jiang, S. Liu, Metagenomic approaches to
understanding bacterial communication during the anammox
reactor start-up, Water Res., 136 (2018) 95–103.
- P.V. Danckwerts, Continuous flow systems. Distribution of residence
times, Chem. Eng. Sci., 2 (1) (1953) 1–13.
- R.B. MacMullin, M. Weber, The theory of short-circuiting
in continuous-flow mixing vessels in series and kinetics of
chemical reactions in such systems. Trans. AIChE, 31 (2)
(1935) 409–458.
- O. Levenspiel, Chemical reaction engineering, 3rd ed., Wiley &
Sons Inc., New York, 1999.
- G.F. Froment, K.B. Bischoff, Non-steady state behavior of fixed
bed catalytic reactors due to catalyst fouling, Chem. Eng. Sci.,
16 (1961) 189–201.
- P.A.G. Encina, F. Fernández-Polanco, Behaviour of an anaerobic
expanded bed reactor in non-steady state conditions, Wat.
Res., 21 (11) (1987) 1329–1334.
- S. Claudel, J.P. Leclerc, L. Tétar, H.G. Lintz, A. Bernard,
Recent extensions of the residence time distribution concept:
unsteady state conditions and hydrodynamic model developments,
Braz. J. Chem. Eng., 17 (4–7) (2000) 947–954.
- J.G. Boelhouwer, H.W. Piepers, A.A.H. Drinkenburg, Nonsteady
state operation of trickle-bed reactors, Stud. Surf. Sci.
Catal., 133 (2001) 231–238.
- S. Yang, X. Li, Influences of extracellular polymeric substances
(EPS) on the characteristics of activated sludge under nonsteady-
state conditions, Proc. Biochem., 44 (2009) 91–96.
- E.B. Nauman, Residence time distribution theory for unsteady
stirred tank reactors, Chem. Eng. Sci., 24 (1969) 1461–1470.
- A. J. Niemi, Residence time distributions of variable flow process,
Int. J. Ap. Rad. Iso., 28 (1977) 855–860.
- A.J. Niemi, Z. Kai, T. Jovan, M.J. Griffith, Tracer testing of processes
under variable flow and volume, Nukleonika 43 (1)
(1998) 73–94.
- J. Fernández-Sempere, R. Font-Montesinos, O. Espejo-Alcaraz,
Residence time distribution for unsteady-state systems, Chem.
Eng. Sci., 50 (1995) 223–230.
- L. Furman, J.P. Leclerc, Z. Stegowski, Tracer investigation of a
packed column under variable flow. Chem. Eng. Sci., 60 (2005)
3043–3048.
- E. Domínguez, F. Ardila, S. Bustamante, System Solver: an
open source tool for mathematically modelling dynamical
systems, Ing. Inv., 30 (3) (2010) 157–164.
- Isee systems, Inc. 2018. STELLA: System Thinking for Education
and Research. Availabe at: https://www.iseesystems.com/.
- The Math Works, Inc. 2018. SIMULINK: Simulation and Model
Based Design. Available at: https://www.mathworks.com/products/simulink.html.
- Ventana Systems, Inc. 2018. Vensim industrial simulation software.
Available at: http://vensim.com/.
- R.B. Chowdhury, G.A. Moore, A.J. Weatherley, M. Arora, A
novel substance flow analysis model for analysing multi-year
phosphorus flow at the regional scale, Sci. Total Environ., 572
(2016) 1269–1280.
- U.S. McKnight, S.G. Funder, J.J. Rasmussen, M. Finkel, P.J. Binning,
P.L. Bjerg, An integrated model for assessing the risk of
TCE groundwater contamination to human receptors and surface
water ecosystems, Ecol. Eng., 36 (2010) 1126–1137.
- J.C.S.I. Gonçalves, M.F. Giorgetti, Mathematical model for the
simulation of water quality in rivers using the Vensim PLE®
software, J. Urb. Environ. Eng., 7 (1) (2013) 48–63.
- R. Chaves, D. López, F. Macías, J. Casares, C. Monterroso,
Application of system dynamics technique to simulate the
fate of persistent organic pollutants in soils, Chemosphere, 90
(2013) 2428–2434.
- H. Ibrahim, M. Pansu, D. Blavet, A. Hatira, P. McDonald, M.
Bernoux, J. Drevon, Modelling the continuous exchange of carbon
between living organisms, the soil and the atmosphere,
Plant Soil, 398 (2016) 381–397.
- J. Álvarez, M. Roca, C. Valderrama, J.L. Cortina, A phosphorous
flow analysis in spain, Sci. Total Environ., 612 (2018) 995–
1006.
- F.R.A. Nascimento, A. Kiperstok, J. Martín, J. Morató, E. Cohim,
Decision support system for management of reactive nitrogen
flows in wastewater system, Environ. Sci. Pollut. Res., 25 (2018)
8644–8653.
- P. Fleury, V. Plagnes, M. Bakalowicz, Modelling of the functioning
of karst aquifers with a reservoir model: Application
to Fontaine de Vaucluse (South of France), J. Hydrol., 345 (2007)
38–49.
- A. Hartmann, M. Kralik, F. Humer, J. Lange, M. Weiler, Identification
of a karst system’s intrinsic hydrodynamic parameters:
upscaling from single springs to the whole aquifer,
Environ. Earth Sci., 65 (2012) 2377–2389.
- Y. Chang, J. Wu, G. Jiang, Modeling the hydrological behavior
of a karst spring using a nonlinear reservoir-pipe model,
Hidrog. J., 23 (2015) 901–914.
- G.M. von Medeazza, V. Moreau, Modelling of water–energy
systems. The case of desalination, Energy, 32 (2007) 1024–1031.
- O. Sahin, R. Siems, R.G. Richards, F. Helfer, R.A. Stewart,
Examining the potential for energy-positive bulk-water infrastructure
to provide long-term urban water security: A systems
approach, J. Clean. Prod., 143 (2017) 557–566.
- A. Ghasemi, B. Saghafian, S. Golian, System dynamics
approach for simulating water resources of an urban water
system with emphasis on sustainability of groundwater, Environ.
Earth Sci., 76 (637) (2017) 1–15.
- R. Li, P. Guo, J. Li, Regional water use structure optimization
under multiple uncertainties based on water resources vulnerability
analysis, Water Resour. Manage., 32 (2018) 1827–1847.
- K. Kontomaris, T.J. Hanratty, Effect of molecular diffusivity on
turbulent diffusion in isotropic turbulence, Int. J. Heat Mass
Transfer, 36 (5) (1993) 1403–1412.
- O. Levenspiel, W.K. Smith, Notes on the diffusion-type model
for the longitudinal mixing of fluids in flow, Chem. Eng. Sci.,
50 (24) (1995) 3891–3896.
- M.F. Edwards, J.F. Richardson, Gas dispersion in packed beds,
Chem. Eng. Sci., 23 (2) (1968) 109–123.
- Z. Dou, Z. Zhou, J. Wang, Y. Huang, Roughness scale dependence
of the relationship between tracer longitudinal dispersion
and Peclet number in variable-aperture fractures, Hydrol.
Processes, 32 (2018) 1461–1475.
- D. Dochain, Analysis of the multiplicity of steady-state profiles
of two tubular reactor models, Comput. Chem. Eng., 114 (2018)
318–324.
- V.V. Oliveira, M.V. Mateus, J.C.S.I. Gonçalves, A.G. Utsumi, M.
F. Giorgetti, Prediction of the longitudinal dispersion coefficient
for small watercourses, Acta Sci. Techol., 39 (3) (2017)
291–299.
- S.C. Chapra, R.P. Canale, Numerical Methods for Engineers,
McGrawHill, 6th ed, 2008.
- Metcalf, Eddy, Wastewater Engineering: Treatment and Reuse,
McGrawHill, 4th ed, 2002.
- D.J.L. Costa, Mathematical model for hydrodynamic evaluation
in non-steady state reactors. (in Portuguese). DSc. Thesis.
EESC – USP, São Carlos, SP, Brazil, 2015. Available at: http://www.teses.usp.br/.
- M. Flury, T. Gimmi, Solute diffusion, in Methods of Soil Analysis,
Part 4, Physical Methods, J.H. Dane, G.C. Topp, eds., 1323–1351, SSSA, Madison, WI, 2002.
- R.B. Bird, W.E. Stewart, E.N. Lightfoot, Thermal conductivity
and the mechanisms of energy transport. In: Transport Phenomena
(Chapter 9), 2nd ed, 2002.
- E. Bianchi, G. Groppi, W. Schwieger, E. Tronconi, H. Freund,
Numerical simulation of heat transfer in the near-wall region
of tubular reactors packed with metal open-cell foams, Chem.
Eng. J., 264 (2015) 268–279.
- N. Amini, Y.A. Hassan, Experimental study of bypass flow in
near wall gaps of a pebble bed reactor using hot wire anemometry
technique, Ann. Nuc. Ener., 65 (2014) 60–71.