References
- A.M. Ghaedi, A. Vafaei, Applications of artificial neural networks
for adsorption removal of dyes from aqueous solution:
A review, Adv. Colloid Interface Sci., 245 (2017) 20–39.
- K.M. Chu, Prediction of two-metal biosorption equilibria
using a neural network, Eur. J. Mineral Proc. Environ. Protect.,
3(1) (2003) 119–127.
- K. Snigdha, Modeling phenol adsorption in water environment
using artificial neural network, Int. Res. J. Environ. Sci.,
2(7) (2013) 39–43.
- R. Gomez-Gonzalez, F.J. Cerino-Córdova, A.M. Garcia-León,
E. Soto-Regalado, N.E. Davila-Guzman, J.J. Salazar-Rabago,
Lead biosorption onto coffee grounds: Comparative analysis
of several optimization techniques using equilibrium adsorption
models and ANN, J. Taiwan Inst. Chem. Eng. 68 (2016)
201–210.
- B.G. Saucedo-Delgado, D.A. De Haro-Del Rio, L.M.
González-Rodríguez, H.E. Reynel-Ávila, D.I. Mendoza-Castillo,
A. Bonilla-Petriciolet, J. Rivera de la Rosa, Fluoride
adsorption from aqueous solution using a protonated clinoptilolite
and its modeling with artificial neural network-based
equations, J. Fluor. Chem., 204 (2017) 98–106.
- P.S. Ghosal, K.V. Kattil, M.K. Yadav, A.K. Gupta, Adsorptive
removal of arsenic by novel iron/olivine composite: Insights
into preparation and adsorption process, J. Environ. Manage.,
209 (2018) 176–187.
- I. Ali, O.M.L. Alharbi, Z.A. Alothman, A.Y. Badjah, A. AAlwarthan,
A.A. Basheer, Artificial neural network modelling
of amido black dye sorption on iron composite nanomaterial:
Kinetics and thermodynamics studies, J. Mol. Liq., 250 (2018)
1–8.
- S.K. Ashan, N. Ziaeifar, R. Khalilnezha, Artificial neural
network modelling of Cr(VI) surface adsorption with NiO
nanoparticles using the results obtained from optimization
of response surface methodology, Neural Comput. Appl., 29
(2018) 969–979.
- M. Pazouki, M. Zabihi, J. Shayegan, M.H. Fatehi, Mercury ion
adsorption on AC@Fe3O4-NH2-COOH from saline solutions:
Experimental studies and artificial neural network modeling,
Korean J. Chem. Eng., 35(3) (2018) 671–683.
- O.M.L. Alharbi, Sorption, kinetic, thermodynamics and artificial
neural network modelling of phenol and 3-amino-phenol
in water on composite iron nano-adsorbent, J. Mol. Liq., 260
(2018) 261–269.
- S. Agarwal, I. Tyagi, V.K. Gupta, M. Ghaedi, M. Masoomzade,
A.M. Ghaedi, B. Mirtamizdoust, Kinetics and thermodynamics
of methyl orange adsorption from aqueous solutions—artificial
neural network-particle swarm optimization modeling, J.
Mol. Liq., 218 (2016) 354–362.
- R. Leyva-Ramos, C.J. Geankoplis, Diffusion in liquid-filled
pores of activated carbon. I. Pore volume diffusion, Can. J.
Chem. Eng., 72 (1994) 262–271.
- K. Hornik, M. Stinchcombe, H. White, Multilayer feed forward
networks are universal aproximators, Neural Netw., 2 (1989)
359–366.
- P. Cardaliaguet, G. Euvrard, Approximation of a function and
its derivative with a neural network, Neural Networks, 5 (1992)
207–220.
- Z. Zainuddin, O. Pauline, Function approximation using artificial
neural networks, Int. J. Syst. Appl. Eng. Develop., 1(4)
(2007) 173–178.
- S. Yang T.O. Ting, K.L. Man, S. SU. Guan, Investigation of neural
networks for function approximation, Procedia Comp. Sci.,
17 (2013) 586–594.
- S. Ferrary, R.F. Stengel, Smooth function approximation using
neural networks, Trans. Neural Networks, 16(1) (2005) 24–38.
- T. Nguyen-Thien, T. Tran-Cong, Approximation of functions
and their derivatives: A neural network implementation
with applications, Appl. Math. Model., 23 (1999) 687–704.
- R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, J.V.
Flores-Cano, M. Sánchez-Polo, Modeling adsorption rate of
tetracyclines on activated carbons from aqueous phase, Chem.
Eng. Res. Des., 104 (2015) 579–588.
- S. Tripathi, R.F. Tabor, Modeling two-rate adsorption kinetics:
Two-site, two-species, bilayer and rearrangement adsorption
processes, J. Colloid Interf. Sci., 476 (2016) 119–131.
- M. Schwaab, E. Steffani, E. Barbosa-Coutinho, J.B. Severo
Júnior, Critical analysis of adsorption/diffusion modelling
as a function of time square root, Chem. Eng. Sci., 173 (2017)
179–186.
- A. Muthukkumaran, K. Aravamudan, Combined Homogeneous
Surface Diffusion Model – Design of experiments
approach to optimize dye adsorption considering both equilibrium
and kinetic aspects, J. Environ. Manage., 204 (2017)
424–435.
- S. Eris, S. Azizian, Extension of classical adsorption rate equations
using mass of adsorbent: A graphical analysis, Sep. Purif.
Technol., 179 (2017) 304–308.
- G. Marbán, L.A. Ramírez–Montoya, H. García, J.A. Menéndez,
A.M.A. Montes–Morán, Load–dependent surface diffusion
model for analyzing the kinetics of protein adsorption
onto mesoporous materials, J. Colloid. Interf. Sci., 511 (2017)
27–38.
- R. Ocampo-Perez, R. Leyva-Ramos, M.Sanchez-Polo, J. Rivera-Urtilla, Role of pore volumen and surface diffusion in
the adsorption of aromatic compounds on activated carbon,
Adsorption, 19(1) (2013) 945–957.
- R. Ocampo-Perez, R. Leyva-Ramos, P. Alonso-Davila, J. Rivera-Utrilla, M. Sanchez-Polo, Modeling adsorption rate of pyridine
onto granular activated carbon, Chem. Eng. J., 165 (2010)
133–141.
- C.H. Giles, D. Smith, A. Huitson, A general treatment and classification
of the solute adsorption isotherm. I. Theoretical, J.
Colloid Interf. Sci., 47(3) (1974) 755.