References
- G. Hoetzel, R. Croome, Long-term phytoplankton monitoring
of the Darling River at Burtundy, New South Wales: Incidence
and significance of cyanobacterial blooms, Marine Freshwater
Res., 45 (1994) 747–759.
- R.D. JudyJr, P.N. Seeley, T.M. Murray, S.C. Svirsky, M.R.
Whitworth, 1982 National Fisheries Survey. Volume I. Technical
Report: Initial Findings (No. FWS/OBS-84/06). Engineering-
Science Inc Denver Co., 1984.
- W.F. Henley, M.A. Patterson, R.J. Neves, A.D. Lemly, Effects
of sedimentation and turbidity on lotic food webs: a concise
review for natural resource managers, Rev. Fish. Sci., 8 (2000)
125–139.
- H. Perlman 2014 Turbidity, In: The USGS Water Science School.
Retrieved from http://water.usgs.gov/edu/turbidity.html on
22 December 2017.
- J. Packman, K. Comings, D. Booth, Using turbidity to determine
total suspended solids in urbanizing streams in the
Puget Lowlands, 1999.
- J.L. McClelland, D.E. Rumelhart, G.E. Hinton, The Appeal of
Parallel Distributed Processing. MIT Press, Cambridge MA,
1986, pp. 3–44.
- S. Agatonovic-Kustrin, R. Beresford, Basic concepts of polynomial
neural network (PNN) modeling and its application in
pharmaceutical research, J. Pharm. Biomed. Anal., 22 (2000)
717–727.
- D.F. Specht, A general regression neural network, IEEE Trans.
Neural Networks, 2 (1991) 568–576.
- R.R. Goyal, H. Patel, S.J. Mane, Polynomial neural network:
an effective tool for predicting water quality for Kalyan-Dombivali Municipal Corporation, Int. J. Sci. Res., 4 (2015)
2863–2866.
- M. Khandelwal, T.N. Singh, Prediction of mine water quality
by physical parameters, J. Scient. Ind. Res., 64 (2005) 564–570.
- L. Swathi, B. Lokeshappa, Polynomial neural networks application
in prediction of water quality, Int. J.Innov. Res. Sci. Eng.
Technol., 4 (2015) 6911–6916.
- E. Dogan, B. Sengorur, R. Koklu, Modeling biological oxygen
demand of the Melen River in Turkey using a polynomial neural
network technique, J. Environ. Manage., 90 (2009) 1229–1235.
- A. Verma, X. Wei, A. Kusiak, Predicting the total suspended
solids in wastewater: a data-mining approach, Eng. Applic.
Artif. Intell., 26 (2013) 1366–1372.
- American Public Health Association and American Water
Works Association, Standard Methods for the Examination of
Water and Wastewater. American Public Health Association
(APHA), 20th Ed, Washington, D.C., USA, 1999.
- L. Rodgers, W.A. Joseph, Nicewander, Thirteen ways to look at
the correlation coefficient, Amer. Stat., 42 (1988) 59–66.
- L. Anastasakis, N. Mort, The development of self-organization
techniques in modelling: a review of the group method of data
handling (GMDH). Research Report 813, Department of Automatic
Control & Systems Engineering, The University of Sheffield,
UK, 2001.
- L.J. Lancashirea, R.C. Reesb, G.R. Ball, Identification of gene
transcript signatures predictive for estrogen receptor and
lymph node status using a stepwise forward selection Polynomial
Neural Network modelling approach, Artif. Intell. Medicine,
43(2008) 99–111.