References

  1. S. Balasubramaniana, Chitosan-Based Polymer Nanocomposites for Heavy Metal Removal, Nanocomposites in Wastewater Treatment, Pan Stanford Publishing, Pte, Singapore, 2014.
  2. D. Humelnicu, M.V. Dinu, E.S. Drăgan, Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents, J. Hazard. Mater., 185 (2011) 447–455.
  3. V. Jain, R. Pandya, S. Pillai, P. Shrivastav, Simultaneous preconcentration of uranium (VI) and thorium (IV) from aqueous solutions using a chelating calix
  4. arene anchored chloromethylated polystyrene solid phase, Talanta, 70 (2006) 257–266.
  5. A. Nilchi, T.S. Dehaghan, S.R. Garmarodi, Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles, Desalination, 321 (2013) 67–71.
  6. T.P. Rao, P. Metilda, J.M. Gladis, Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination—an overview, Talanta, 68 (2006) 1047–1064.
  7. P. Vijayan, I. Dulera, P. Krishnani, K. Vaze, S. Basu, R. Sinha, Overview of the thorium programme in India, in: Thorium Energy for the World, Springer, 2016, pp. 59–69.
  8. V. Höllriegl, M. Greiter, A. Giussani, U. Gerstmann, B. Michalke, P. Roth, U. Oeh, Observation of changes in urinary excretion of thorium in humans following ingestion of a therapeutic soil, J. Environ. Radioact., 95 (2007) 149–160.
  9. F.A. Aydin, M. Soylak, A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples, Talanta, 73 (2007) 134–141.
  10. W.H. Brattain, J.A. Becker, Thermionic and adsorption characteristics of thorium on tungsten, Phys. Rev., 43 (1933) 428.
  11. A. Jyothi, G. Rao, Solvent extraction behaviour of lanthanum (III), cerium (III), europium (III), thorium (IV) and uranium (VI) with 3-phenyl-4-benzoyl-5-isoxazolone, Talanta, 37 (1990) 431–433.
  12. K.A. Kraus, G.E. Moore, F. Nelson, Anion-exchange studies. XXI. Th (IV) and U (IV) in hydrochloric acid. Separation of thorium, protactinium and uranium1, 2, J. Am. Chem. Soc., 78 (1956) 2692–2695.
  13. Z. Shiri-Yekta, M.R. Yaftian, A. Nilchi, Silica nanoparticles modified with a Schiff base ligand: an efficient adsorbent for Th (IV), U (VI) and Eu (III) ions, Korean J. Chem. Eng., 30 (2013) 1644–1651.
  14. C.W. Sill, C. Willis, Precipitation of submicrogram quantities of thorium by barium sulfate and application to the fluorometric determination of thorium in mineralogical and biological samples, Anal. Chem., 36 (1964) 622–630.
  15. M. Tsezos, B. Volesky, Biosorption of uranium and thorium, Biotech. Bioeng., 23 (1981) 583–604.
  16. D. Zhang, S. Wei, C. Kaila, X. Su, J. Wu, A.B. Karki, D.P. Young, Z. Guo, Carbon-stabilized iron nanoparticles for environmental remediation, Nanoscale, 2 (2010) 917–919.
  17. T. Gäfvert, C. Ellmark, E. Holm, Removal of radionuclides at a waterworks, J. Environ. Radioact., 63 (2002) 105–115.
  18. Y. Chen, L. Zhao, Y. Wei, L.-F. He, F.-D. Tang, Adsorption characteristics of thorium on silica-based anion exchange resins, Nucl. Sci. Technol., 26 (2015) 55–62.
  19. D. Li, Y. Zuo, S. Meng, Separation of thorium (IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method, J. Alloys Compd., 374 (2004) 431–433.
  20. S. Pollard, G. Fowler, C. Sollars, R. Perry, Low-cost adsorbents for waste and wastewater treatment: a review, Sci. Total Environ., 116 (1992) 31–52.
  21. A. Rahmati, A. Ghaemi, M. Samadfam, Kinetic and thermodynamic studies of uranium (VI) adsorption using Amberlite IRA-910 resin, Ann. Nucl. Eng., 39 (2012) 42–48.
  22. F.L. Zhou, R.H. Gong, Manufacturing technologies of polymeric nanofibres and nanofibre yarns, Polym. Int., 57 (2008) 837–845.
  23. D. Mohan, C.U. Pittman, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137 (2006) 762–811.
  24. M. Saifuddin, P. Kumaran, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Elect. J. Biotechnol., 8 (2005) 43–53.
  25. P. Kampalanonwat, P. Supaphol, Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal, ACS App. Mater. Interface, 2 (2010) 3619–3627.
  26. A. Nilchi, R. Saberi, S.R. Garmarodi, A. Bagheri, Evaluation of PAN-based manganese dioxide composite for the sorptive removal of cesium-137 from aqueous solutions, Appl. Radiat. Isot., 70 (2012) 369–374.
  27. K. Saeed, S. Haider, T.-J. Oh, S.-Y. Park, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption, J. Membr. Sci., 322 (2008) 400–405.
  28. M. Mokhtari, A.R. Keshtkar, Removal of Th (IV), Ni (II) and Fe (II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane, Res. Chem. Intermed., 42 (2016) 4055–4076.
  29. A. Dastbaz, A.R. Keshtkar, Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning, Appl. Surf. Sci., 293 (2014) 336–344.
  30. M. Douglas, Design and Analysis of Experiments, Wiley, UK, 2009.
  31. T.K. Trinh, L.-S. Kang, Application of response surface method as an experimental design to optimize coagulation tests, Environ. Eng. Res., 15 (2010) 63–70.
  32. S. Lee, J. Kim, B.-C. Ku, J. Kim, H.-I. Joh, Structural evolution of polyacrylonitrile fibers in stabilization and carbonization, Adv. Chem. Eng. Sci., 2 (2012) 275.
  33. A. Ladhe, P. Frailie, D. Hua, M. Darsillo, D. Bhattacharyya, Thiol-functionalized silica–mixed matrix membranes for silver capture from aqueous solutions: experimental results and modeling, J. Membr. Sci., 326 (2009) 460–471.
  34. S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal, Langmuir, 19 (2003) 5058–5064.
  35. T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies, Colloids Surf., A, 368 (2010) 13–22.
  36. M. Talebi, S. Abbasizadeh, A.R. Keshtkar, Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber, Process Saf. Environ. Prot., 109 (2017) 340–356.
  37. M. Zulkali, A. Ahmad, N. Norulakmal, Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution, Bioresour. Technol., 97 (2006) 21–25.
  38. S. Azadi, A. Karimi-Jashni, S. Javadpour, Photocatalytic treatment of landfill leachate using W-doped TiO2 nanoparticles, J. Environ. Eng., 143 (2017) 04017049.
  39. D. Langmuir, J.S. Herman, The mobility of thorium in natural waters at low temperatures, Geochim. Cosmochim. Acta, 44 (1980) 1753–1766.
  40. S. Savvin, Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements, Talanta, 8 (1961) 673–685.
  41. J.F. Corbett, Pseudo first-order kinetics, J. Chem. Educ., 49 (1972) 663.
  42. F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review, Chem. Eng. J., 151 (2009) 1–9.
  43. H. Yuh-Shan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientomet, 59 (2004) 171–177.
  44. B. Hameed, D. Mahmoud, A. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a lowcost adsorbent: coconut (Cocos nucifera) bunch waste, J. Hazard. Mater., 158 (2008) 65–72.
  45. Y. Wu, S.-Y. Kim, D. Tozawa, T. Ito, T. Tada, K. Hitomi, E. Kuraoka, H. Yamazaki, K. Ishii, Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin, J. Nucl. Sci. Technol., 49 (2012) 320–327.
  46. E. Metwally, T. El-Zakla, R. Ayoub, Thermodynamics study for the sorption of 134Cs and 60Co radionuclides from aqueous solutions, J. Nucl. Radiochem. Sci., 9 (2008) 1–6.
  47. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard, Adsorption of Pb (II) from aqueous solution using new adsorbents prepared from agricultural waste: adsorption isotherm and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
  48. M. Bozorgi, S. Abbasizadeh, F. Samani, S.E. Mousavi, Performance of synthesized cast and electrospun PVA/chitosan/ZnO-NH2 nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from wastewater, Environ. Sci. Pollut. Res., (2018) 1–16.
  49. A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR,J. Appl. Chem., 3 (2012) 38–45.
  50. M.M. Tehrani, S. Abbasizadeh, A. Alamdari, S.E. Mousavi, Prediction of simultaneous sorption of copper (II), cobalt (II) and zinc (II) contaminants from water systems by a novel multifunctionalized zirconia nanofiber, Desal. Wat. Treat., 62 (2017) 403–417.
  51. G. Moradi, F. Dabirian, P. Mohammadi, L. Rajabi, M. Babaei, N. Shiri, Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: characterization and process optimization by response surface methodology, Chem. Eng. Res. Des., 129 (2018) 182–196.
  52. S. Yari, S. Abbasizadeh, S.E. Mousavi, M.S. Moghaddam, A.Z. Moghaddam, Adsorption of Pb (II) and Cu (II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups, Process Saf. Environ. Prot., 94 (2015) 159–171.
  53. Ü.H. Kaynar, M. Ayvacıklı, Ü. Hiçsönmez, S.Ç. Kaynar, Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies, J. Environ. Radioact., 150 (2015) 145–151.
  54. P. Ilaiyaraja, A.K.S. Deb, K. Sivasubramanian, D. Ponraju, B. Venkatraman, Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene, J. Hazard. Mater., 250 (2013) 155–166.