References
- Y.J. Tu, C.F. You, C.K. Chang, M.H. Chen, Application of
magnetic nano-particles for phosphorus removal/recovery in
aqueous solution, J. Taiwan Inst. Chem. Eng., 46 (2015) 148–154.
- L.G. Yan, K. Yang, R.R. Shan, T. Yan, J. Wei, S.J. Yu, H.Q. Yu,
B. Du, Kinetic, isotherm and thermodynamic investigations
of phosphate adsorption onto core-shell FeOOH@LDHs
composites with easy magnetic separation assistance, J. Colloid
Interface Sci., 448 (2015) 508–516.
- M. Xiu-Ling, C. Sheng, Z. Si-Ning, Synthesis and characterization
of magnetic chitosan microspheres, J. Fujian Normal Univ., 20
(2004) 62–65.
- Z. Wang, W. Fang, M. Xing, D. Wu, A bench-scale study on the
removal and recovery of phosphate by hydrous zirconia-coated
magnetite nanoparticles, J. Magn. Mater., 424 (2017) 213–220.
- J. Chen, L.G. Yan, H.Q. Yu, S. Li, L.L. Qin, G.Q. Liu, Y.F. Li, B. Du,
Efficient removal of phosphate by facile prepared magnetic
diatomite and illite clay from aqueous solution, Chem. Eng. J.,
287 (2016) 162–172.
- F. Long, J.L. Gong, G.M. Zeng, L. Chen, X.Y. Wang, J.H. Deng,
Q.Y. Niu, H.Y. Zhang, X.R. Zhang, Removal of phosphate from
aqueous solution by magnetic Fe–Zr binary oxide, Chem. Eng.
J., 171 (2011) 448–455.
- G. Zelmanov, R. Semiat, Iron (Fe3+) oxide/hydroxide
nanoparticles-based agglomerates suspension as adsorbent for
chromium (Cr6+) removal from water and recovery, Sep. Purif.
Technol., 80 (2011) 330–337.
- H. Wang, J. Zhu, Q. Fu, H. Hu, Adsorption of phosphate on
pure and humic acid-coated ferrihydrite, J. Soils Sediment, 15
(2015) 1500–1509.
- P.L. Sibrell, T. Kehler, Phosphorus removal from aquaculture
effluents at the Northeast Fishery Center in Lamar, Pennsylvania
using iron oxide sorption media, Aquac. Eng., 72–73 (2016) 45–52.
- M. Kunaschk, V. Schmalz, N. Dietrich, T. Dittmar, E. Worch,
Novel regeneration method for phosphate loaded granular
ferric (hydr)oxide – a contribution to phosphorus recycling,
Water Res., 71 (2015) 219–226.
- Z. Wang, M. Xing, W. Fang, D. Wu, One-step synthesis of
magnetite core/zirconia shell nanocomposite for high efficiency
removal of phosphate from water, Appl. Surf. Sci., 366 (2016)
67–77.
- Y. Li, B. Zhou, F. Xu, H. Jiang, W. Zhang, The advantages of
a superconducting magnetic intensity greater than 1 T for
phosphate–ferric flocs separation in HGMS, Sep. Purif. Technol.,
141 (2015) 331–338.
- A. APHA, WEF, Standard Methods for the Examination of
Water and Wastewater 20th ed.-4500-NO3-D nitrate Electrode
Method, American Public Health Association, Washington, DC,
1998.
- T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+
ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
- H.A. Mengistu, A. Tessema, M.B. Demlie, T.A. Abiye, O. Royset,
Surface-complexation modelling for describing adsorption of
phosphate on hydrous ferric oxide surface, Water S.A., 41 (2015)
157–167.
- Y. Li, Z. Li, F. Xu, W. Zhang, Superconducting magnetic
separation of phosphate using freshly formed hydrous ferric
oxide sols, Environ. Technol., 38 (2017) 377.
- M. Sujana, G. Soma, N. Vasumathi, S. Anand, Studies on fluoride
adsorption capacities of amorphous Fe/Al mixed hydroxides
from aqueous solutions, J. Fluorine Chem., 130 (2009) 749–754.
- A. Cieśla, Practical aspects of high gradient magnetic separation
using superconducting magnets, Physicochem. Probl. Mi., 37
(2003) 169–181.