References

  1. Y.J. Tu, C.F. You, C.K. Chang, M.H. Chen, Application of magnetic nano-particles for phosphorus removal/recovery in aqueous solution, J. Taiwan Inst. Chem. Eng., 46 (2015) 148–154.
  2. L.G. Yan, K. Yang, R.R. Shan, T. Yan, J. Wei, S.J. Yu, H.Q. Yu, B. Du, Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell FeOOH@LDHs composites with easy magnetic separation assistance, J. Colloid Interface Sci., 448 (2015) 508–516.
  3. M. Xiu-Ling, C. Sheng, Z. Si-Ning, Synthesis and characterization of magnetic chitosan microspheres, J. Fujian Normal Univ., 20 (2004) 62–65.
  4. Z. Wang, W. Fang, M. Xing, D. Wu, A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles, J. Magn. Mater., 424 (2017) 213–220.
  5. J. Chen, L.G. Yan, H.Q. Yu, S. Li, L.L. Qin, G.Q. Liu, Y.F. Li, B. Du, Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution, Chem. Eng. J., 287 (2016) 162–172.
  6. F. Long, J.L. Gong, G.M. Zeng, L. Chen, X.Y. Wang, J.H. Deng, Q.Y. Niu, H.Y. Zhang, X.R. Zhang, Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide, Chem. Eng. J., 171 (2011) 448–455.
  7. G. Zelmanov, R. Semiat, Iron (Fe3+) oxide/hydroxide nanoparticles-based agglomerates suspension as adsorbent for chromium (Cr6+) removal from water and recovery, Sep. Purif. Technol., 80 (2011) 330–337.
  8. H. Wang, J. Zhu, Q. Fu, H. Hu, Adsorption of phosphate on pure and humic acid-coated ferrihydrite, J. Soils Sediment, 15 (2015) 1500–1509.
  9. P.L. Sibrell, T. Kehler, Phosphorus removal from aquaculture effluents at the Northeast Fishery Center in Lamar, Pennsylvania using iron oxide sorption media, Aquac. Eng., 72–73 (2016) 45–52.
  10. M. Kunaschk, V. Schmalz, N. Dietrich, T. Dittmar, E. Worch, Novel regeneration method for phosphate loaded granular ferric (hydr)oxide – a contribution to phosphorus recycling, Water Res., 71 (2015) 219–226.
  11. Z. Wang, M. Xing, W. Fang, D. Wu, One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water, Appl. Surf. Sci., 366 (2016) 67–77.
  12. Y. Li, B. Zhou, F. Xu, H. Jiang, W. Zhang, The advantages of a superconducting magnetic intensity greater than 1 T for phosphate–ferric flocs separation in HGMS, Sep. Purif. Technol., 141 (2015) 331–338.
  13. A. APHA, WEF, Standard Methods for the Examination of Water and Wastewater 20th ed.-4500-NO3-D nitrate Electrode Method, American Public Health Association, Washington, DC, 1998.
  14. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
  15. H.A. Mengistu, A. Tessema, M.B. Demlie, T.A. Abiye, O. Royset, Surface-complexation modelling for describing adsorption of phosphate on hydrous ferric oxide surface, Water S.A., 41 (2015) 157–167.
  16. Y. Li, Z. Li, F. Xu, W. Zhang, Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols, Environ. Technol., 38 (2017) 377.
  17. M. Sujana, G. Soma, N. Vasumathi, S. Anand, Studies on fluoride adsorption capacities of amorphous Fe/Al mixed hydroxides from aqueous solutions, J. Fluorine Chem., 130 (2009) 749–754.
  18. A. Cieśla, Practical aspects of high gradient magnetic separation using superconducting magnets, Physicochem. Probl. Mi., 37 (2003) 169–181.