References

  1. M. Sayadi, R. Trivedy, R. Pathak, Pollution of pharmaceutical in environment, Indo. Am. J. Pharm. Res., 26 (2010) 89–94.
  2. K. Divya, B. Narayana, New visible spectrophotometric methods for the determination of atenolol in pure and dosage forms via complex formation, Indo. Am. J. Pharm. Res., 4 (2014) 194–203.
  3. Y. Hu, N.M. Fitzgerald, G. Lv, X. Xing, W.T. Jiang, Z. Li, Adsorption of atenolol on kaolinite, Adv. Mater. Sci. Eng., 2015 (2015) 1–8.
  4. J. Maszkowsk, S. Stolte, J. Kumirska, P. Łukaszewicz, K. Mioduszewska, A. Puckowski, M. Caban,M. Wagil, P. Stepnowski, A. Białk-Bielińska, Beta-blockers in the environment: Part I. Mobility and hydrolysis study, Sci. Total Environ., 493 (2014) 1112–1121.
  5. A. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey, Treatment options for wastewater effluents from pharmaceutical companies, Int. J. Environ. Sci. Technol., 8 (2011) 649–666.
  6. K.D. Brown, J. Kulis, B. Thomson, T.H. Chapman, D.B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ., 366 (2006) 772–783.
  7. S. Veloutsou, E. Bizani, K. Fytianos, Photo-Fenton decomposition of β-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates, Chemosphere, 107 (2014) 180–186.
  8. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices – a review, J. Environ. Manage., 92 (2011) 2304–2347.
  9. A. Urtiaga, G. Pérez, R. Ibáñez, I. Ortiz, Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate, Desalination, 331 (2013) 26–34.
  10. J. Sotelo, A. Rodríguez, S. Álvarez, J. García, Modeling and elimination of atenolol on granular activated carbon in fixed bed column, Int. J. Environ. Res., 6 (2012) 961–968.
  11. A. Seyed Mohammadi, G. Asgari, A. Dargahi, S.A. Mobarakian, Equilibrium and synthetic equations for index removal of methylene blue using activated carbon from oak fruit bark, J. Mazandaran Univ. Med. Sci., 24 (2015) 172–187.
  12. A. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, et al., Treatment options for wastewater effluents from pharmaceutical companies, Int. J. Environ. Sci. Technol., 8 (2011) 649–666.
  13. M. Kamranifar, M. Khodadadi, V. Samiei, B. Dehdashti, M. Noori Sepehr, L. Rafati, N. Nasseh, Comparison the removal of reactive red 195 dye using powder and ash of barberry stem as a low cost adsorbent from aqueous solutions: Isotherm and kinetic study, J. Mol. Liq., 255 (2018) 572–577.
  14. L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari, A.H. Mahvi, Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies, Int. J. Environ. Sci. Technol., 15 (2018) 513–524.
  15. L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari, A.H. Mahvi, Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent, J. Mol. Liq., 224 (2016) 832–841.
  16. M.H. Ehrampoush, M. Miri, S.M. Momtaz, M.T. Ghaneian, L. Rafati, H. Karimi, S. Rahimi, Selecting the optimal process for the removal of reactive red 198 dye from textile wastewater using analytical hierarchy process (AHP), Desal. Wat. Treat., 57 (2016) 27237–27242.
  17. M. Khodadadi, A.H. Mahvi, M.T. Ghaneian, M.H. Ehrampoush, H. Dorri, L. Rafati, The role of desalination in removal of the chemical, physical and biological parameters of drinking water (a case study of Birjand City, Iran), Desal. Wat. Treat., 57 (2016) 25331–25336.
  18. L. Rafati, R. Nabizadeh, A.H. Mahvi, M.H. Dehghani, Removal of phosphate from aqueous solutions by iron nano-particle resin Lewatit (FO36), Korean J. Chem. Eng., 29 (2012) 473–477.
  19. L. Rafati, A.H. Mahvi, A.R. Asgari, S.S. Hosseini, Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin, Int. J. Environ. Sci. Technol., 7 (2010) 147–156.
  20. B. Dehdashti, M.M. Amin, H. Pourzamani, M.H. Ehrampoush, M. Mokhtari, Atenolol absorption by multi-wall carbon nanotubes from aqueous solutions, J. Mazandaran Univ. Med. Sci., 26 (2017) 152–170.
  21. A. Almasi, M. Mohammadi, Z. Atafar, A. Azizi, F. Amirian, A. Dargahi, Study the efficiency of processed walnut bark powder for methylene blue color removal from aqueous solution, De Pharma Chem., 8 (2016) 253–257.
  22. A. Mohseni Bandpei, S.M. Mohseni, A. Sheikhmohammadi, M. Sardar, M. Sarkhosh, M. Almasian, M. Avazpour, Z. Mosallanejad, Z. Atafar, S. Nazari, S. Rezaei, Optimization of arsenite removal by adsorption onto organically modified montmorillonite clay: experimental and theoretical approaches, Korean J. Chem. Eng., 34 (2017) 376–383.
  23. A. Sheikhmohammadi, Z. Dahaghin, S.M. Mohseni, M. Sarkhosh, H. Azarpira, Z. Atafar, M. Abtahi, S. Rezaei, M. Sardar, H. Masoudi, M. Faraji, S. Nazari, R.H.l. Pouya, M. Almasian, The synthesis and application of the SiO2@Fe3O4@MBT nanocomposite as a new magnetic sorbent for the adsorption of arsenate from aqueous solutions: modeling, optimization, and adsorption studies, J. Mol. Liq., 255 (2018) 313–323.
  24. T. Madrakian, A. Afkhami, M. Ahmadi, H. Bagheri, Removal of some cationic dyes from aqueous solutions using magneticmodified multi-walled carbon nanotubes, J. Hazard. Mater., 196 (2011) 109–114.
  25. E. Ayranci, O. Duman, In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth, Sep. Sci. Technol., 44 (2009) 3735–3752.
  26. O. Duman, Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions, Chem. Eng. J., 156 (2010) 70–76.
  27. O. Duman, E. Ayranci, Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy, J. Hazard. Mater., 174 (2010) 359–367.
  28. O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.
  29. O. Duman, S. Tunç, T.G. Polat, Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent, Microporous Mesoporous Mater., 210 (2015) 176–184.
  30. O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloy. Compd., 687 (2016) 370–383.
  31. O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
  32. C. Lu, F. Su, S. Hu, Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions, Appl. Surf. Sci., 254 (2008) 7035–7041.
  33. H. Pourzamani, Y. Hajizadeh, S. Fadaei, Efficiency enhancement of multi-walled carbon nanotubes by ozone for benzene removal from aqueous solution, Int. J. Environ. Health Eng., 4 (2015) 29, doi: 10.4103/2277-9183.163972.
  34. M.M. Amin, B. Bina, A.M.S. Majd, H. Pourzamani, Benzene removal by nano magnetic particles under continuous condition from aqueous solutions, Front. Environ. Sci. Eng., 8 (2014) 345–356.
  35. B. Bina, M. Amin, A. Rashidi, H. Pourzamani, Benzene and toluene removal by carbon nanotubes from aqueous solution, Arch. Environ. Prot., 38 (2012) 3–25.
  36. H. Pourzamani, S. Fadaei, M.M. Amin, Release control of nanomagnetic particles in water and wastewater treatment, Anu. Inst. Geociênc., 37 (2014) 223–231.
  37. S. Sobhanardakani, R. Zandipak, Evaluation of carbon nanotubes efficiency for removal of Janus Green dye from Ganjnameh River water sample, J. Health Dev., 3 (2015) 282–292.
  38. G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217 (2013) 119–128.
  39. L. Zhang, X. Song, X. Liu, L. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes, Chem. Eng. J., 178 (2011) 26–33.
  40. H.A. Ismael, L.H. Khdum, A.J. Lafta, Use of Iraqi cherry seeds in the removal of paracetamol and atenolol medicines from their aqueous solutions, Int. J. Sci. Res., 3 (2014) 2290–2295.
  41. J.C. Hsu, C.H. Liao, Y.L. Wei, Nitrate removal by synthetic nanoscale zero-valent iron in aqueous recirculated reactor, Sustainable Environ. Res., 6 (2011) 353–359.
  42. M.A. Tofighy, T. Mohammadi, Nitrate removal from water using functionalized carbon nanotube sheets, Chem. Eng. Res. Des., 90 (2012) 1815–1822.
  43. B. Pan, B. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol., 42 (2008) 9005–9013.
  44. B. Dehdashti, M.M. Amin, H.R. Pourzamani, L. Rafati, M. Mokhtari, Removal of atenolol from aqueous solutions by multiwalled carbon nanotubes modified with ozone: kinetic and equilibrium study, Water Sci. Technol., 2017 (2018) 636–649.
  45. V. Arya, L. Philip, Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite, Microporous Mesoporous Mater., 232 (2016) 273–280.
  46. G.Z. Kyzas, A. Koltsakidou, S.G. Nanaki, D.N. Bikiaris, D.A. Lambropoulou, Removal of beta-blockers from aqueous media by adsorption onto graphene oxide, Sci. Total Environ., 537 (2015) 411–420.