References

  1. M. Saranya, A. Nirmala Grace, Hydrothermal synthesis of CuS nanostructures with different morphology, J. Nano Res., 18–19 (2012) 43–51.
  2. X.-H. Guan, L. Yang, X. Guan, G.-S. Wang, Synthesis of a flowerlike CuS/ZnS nanocomposite decorated on reduced graphene oxide and its photocatalytic performance, RSC Adv., 5 (2015) 36185–36191.
  3. L.J. Zhang, T.F. Xie, D.J. Wang, S. Li, L.L. Wang, L.P. Chen, Y.C. Lu, Noble-metal-free CuS/CdS composites for photocatalytic H2 evolution and its photogenerated charge transfer properties, Int. J. Hydrogen Energy, 38 (2013) 11811–11817.
  4. H.S. Kim, D. Kim, B.S. Kwak, G.B. Han, M.H. Um, M. Kang, Synthesis of magnetically separable core at shell structured NiFe2O4 at TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting, Chem. Eng. J., 243 (2014) 272–279.
  5. L. Chen, X. Li, Y. Wang, C. Gao, H. Zhang, B. Zhao, F. Teng, J. Zhou, Z. Zhang, X. Pan, E. Xie, Low-temperature synthesis of tin dioxide hollow nanospheres and their potential applications in dye-sensitized solar cells and photoelectrochemical type self-powered ultraviolet photodetectors, J. Power Sources., 272 (2014) 886–894.
  6. K.J. Huang, J.Z. Zhang, Y. Fan, One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials, J. Alloys Compd., 625 (2015) 158–163.
  7. Y. He, X. Yu, X. Zhao, Synthesis of hollow CuS nanostructured microspheres with novel surface morphologies, Mater. Lett., 61 (2007) 3014–3016.
  8. S.-W. Hsu, W. Bryks, A.R. Tao, Effects of carrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks, Chem. Mater., 24 (2012) 3765–3771.
  9. M. Nafees, S. Ali, K. Rasheed, S. Idrees, The novel and economical way to synthesize CuS nanomaterial of different morphologies by aqueous medium employing microwaves irradiation, Appl. Nanosci., 2 (2011) 157–162.
  10. G.R. Chaudhary, P. Bansal, S.K. Mehta, Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions, Chem. Eng. J., 243 (2014) 217–224.
  11. Y. Li, H. Wang, X. Li, T. Chen, D. Zhao, CuS/Fe: a novel and highly efficient catalyst system for coupling reaction of aryl halides with diaryl diselenides, Tetrahedron, 66 (2010) 8583–8586.
  12. P. Bansal, G.R. Chaudhary, N. Kaur, S.K. Mehta, An efficient and green synthesis of xanthene derivatives using CuS quantum dots as a heterogeneous and reusable catalyst under solvent free conditions, RSC Adv., 5 (2015) 8205–8209.
  13. R. Kaplánek, V. Krchňák, Fast and effective reduction of nitroarenes by sodium dithionite under PTC conditions: application in solid-phase synthesis, Tetrahedron Lett., 54 (2013) 2600–2603.
  14. L. Pehlivan, E. Métay, S. Laval, W. Dayoub, P. Demonchaux, G. Mignani, M. Lemaire, Alternative method for the reduction of aromatic nitro to amine using TMDS-iron catalyst system, Tetrahedron, 67 (2011) 1971–1976.
  15. L. Pehlivan, E. Métay, S. Laval, W. Dayoub, P. Demonchaux, G. Mignani, M. Lemaire, Iron-catalyzed selective reduction of nitro compounds to amines, Tetrahedron Lett., 51 (2010) 1939–1941.
  16. B. Kaur, M. Tumma, R. Srivastava, Transition-metal-exchanged nanocrystalline ZSM-5 and metal-oxide-incorporated SBA-15 catalyzed reduction of nitroaromatics, Ind. Eng. Chem. Res., 52 (2013) 11479–11487.
  17. V. Reddy, R.S. Torati, S. Oh, C. Kim, Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi Gaertn. Fruit pericarp and their catalytic application for the reduction of p-nitroaniline, Ind. Eng. Chem. Res., 52 (2013) 556–564.
  18. A. Baykal, E. Karaoglu, H. Sözeri, E. Uysal, M.S. Toprak, Synthesis and characterization of high catalytic activity magnetic Fe3O4 supported Pd nanocatalyst, J. Supercond. Novel Magn., 26 (2013) 165–171.
  19. W. Zhang, Y. Sun, L. Zhang, In situ synthesis of monodisperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol, Ind. Eng. Chem. Res., 54 (2015) 6480–6488.
  20. F. Xia, X. Xu, X. Li, L. Zhang, L. Zhang, H. Qiu, W. Wang, Y. Liu, J. Gao, Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-nitrophenol, Ind. Eng. Chem.Res., 53 (2014) 10576–10582.
  21. S. Yoo, S. Lee, Reduction of organic compounds with sodium borohydride-copper(II) sulfate system, Synlett, 1990 (1990) 419–420.
  22. S. Pina, D.M. Cedillo, C. Tamez, N. Izquierdo, J.G. Parsons, J.J. Gutierrez, Reduction of nitrobenzene derivatives using sodium borohydride and transition metal sulfides, Tetrahedron Lett., 55 (2014) 5468–5470.
  23. W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, Nanoporous CuS with excellent photocatalytic property, Sci. Rep., 5 (2015) 1–11.
  24. M.J. Pirouz, M.H. Beyki, F. Shemirani, Anhydride functionalised calcium ferrite nanoparticles: a new selective magnetic material for enrichment of lead ions from water and food samples, Food Chem., 170 (2015) 131–137.
  25. J. Zhang, J.M. Song, H.L. Niu, C.J. Mao, S.Y. Zhang, Y.H. Shen, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone, Sens. Actuators, B, 221 (2015) 55–62.
  26. A. Khazaei, A. Ranjbaran, F. Abbasi, M. Khazaei, A.R. Moosavi-Zare, Synthesis, characterization and application of ZnFe2O4 nanoparticles as a heterogeneous ditopic catalyst for the synthesis of pyrano[2,3-d] pyrimidines, RSC Adv., 5 (2015) 13643–13647.
  27. S. Debnath, J. Kitinya, M.S. Onyango, Removal of Congo red from aqueous solution by two variants of calcium and iron based mixed oxide nano-particle agglomerates, J. Ind. Eng. Chem., 20 (2014) 2119–2129.
  28. I. Tamiolakis, S. Fountoulaki, N. Vordos, I.N. Lykakis, G.S. Armatas, Mesoporous Au-TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds, J. Mater. Chem. A, 1 (2013) 14311–14319.
  29. J. Feng, Y. Wang, L. Zou, B. Li, X. He, Y. Ren, Y. Lv, Z. Fan, Synthesis of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue, J. Colloid Interface Sci., 438 (2015) 318–322.
  30. J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, Q. Xu, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis, Chem. Eng. J., 259 (2014) 53–61.
  31. L. Sun, D. Chen, S. Wan, Z. Yu, Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids, Biores. Technol., 198 (2015) 300–308.
  32. D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Biores. Technol., 98 (2007) 14–21.
  33. Y. Bulut, H. Ayd, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194 (2006) 259–267.
  34. D.L. Postai, C.A. Demarchi, F. Zanatta, A. Rodrigues, D. Caroline, C. Melo, Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent, Alexandria Eng. J., 55 (2016) 1713–1723.
  35. Z. Jian, P. Qingwei, N. Meihong, S. Haiqiang, L. Na, Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide, Appl. Clay Sci., 84 (2013) 12–16.
  36. Y. Li, Q. Du, T. Liu, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, Methylene blue adsorption on graphene oxide/calcium alginate composites, Carbohydr. Polym., 95 (2013) 501–507.
  37. X. Wu, Y. Shi, S. Zhong, H. Lin, J. Chen, Facile synthesis of Fe3O4-graphene @ mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue, Appl. Surf. Sci., 378 (2016) 80–86.
  38. X. Liu, Y. Zhou, W. Nie, L. Song, Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal, J. Mater. Sci., 50 (2015) 6113–6123.
  39. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, ZnFe2O4 nanocrystals: synthesis and magnetic properties, J. Phys. Chem. C, 111 (2007) 12274–12278.
  40. Z.H. Wang, D.Y. Geng, Y.J. Zhang, Z.D. Zhang, CuS:Ni flowerlike morphologies synthesized by the solvothermal route, Mater. Chem. Phys., 122 (2010) 241–245.
  41. F. Li, J. Wu, Q. Qin, Z. Li, X. Huang, Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures, Powder Technol., 198 (2010) 267–274.
  42. A. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang, J. Xu, Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles, J. Alloys Compd., 458 (2008) 487–491.
  43. W. Zhang, F. Shen, R. Hong, Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles, Particuology, 9 (2011) 179–186.
  44. S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes, J. Phys. Chem. C, 114 (2010) 8814–8820.
  45. S. Özkar, M. Zahmakiran, Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst, J. Alloys Compd., 404–406 (2005) 728–731.
  46. M.H. Beyki, M. Bayat, F. Shemirani, Fabrication of core–shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye, Biores. Technol., 218 (2016) 326–334.
  47. M. Iqbal, N. Iqbal, I. Ahmad, N. Ahmad, M. Zahid, Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste, Ecol. Eng., 88 (2016) 265–275.
  48. M.K. Nduna, A.E. Lewis, P. Nortier, A model for the zeta potential of copper sulphide, Colloids Surf., A, 441 (2014) 643–652.
  49. L. Su, J. Feng, X. Zhou, C. Ren, H. Li, X. Chen, Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles, Anal. Chem., 84 (2012) 5753−5758.
  50. Y. Ge, Q. Song, Z. Li, A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution, J. Ind. Eng. Chem., 23 (2015) 228–234.
  51. Q. Wang, J. Feng, L. Ma, W. Wei, J. Xie, C. Xia, J. Zhu, D. Jiang, Synthesis, characterization, and adsorption properties of silica aerogels crosslinked with diisocyanate under ambient drying, J. Mater. Sci., 51 (2016) 9472–9483.
  52. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Clarified sludge (basic oxygen furnace sludge) – an adsorbent for removal of Pb(II) from aqueous solutions – kinetics, thermodynamics and desorption studies, J. Hazard. Mater., 170 (2009) 252–262.
  53. T.S. Anirudhan, F. Shainy, Adsorption behaviour of 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite for cadmium (II) from aqueous solutions, J. Ind. Eng. Chem., 32 (2015) 157–166.
  54. E. Igberase, P. Osifo, Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution, J. Ind. Eng. Chem., 26 (2015) 340–347.
  55. Q. Huang, M. Liu, R. Guo, L. Mao, Q. Wan, G. Zeng, H. Huang, F. Deng, X. Zhang, Y. Wei, Facile synthesis and characterization of poly(levodopa)-modified silica nanocomposites via selfpolymerization of levodopa and their adsorption behavior toward Cu2+, J. Mater. Sci., 51 (2016) 9625–9637.
  56. M.H. Beyki Shemirani, F. Shemirani, Dual application of facilely synthesized Fe3O4 nanoparticles: fast reduction of nitro compound and preparation of magnetic polyphenylthiourea nanocomposite for efficient adsorption of lead ions, RSC Adv., 5 (2015) 22224–22233.