References
   -  B. Narsimlu, A.K. Gosain, B.R. Chahar, S.K. Singh,
    P.K. Srivastava, SWAT model calibration and uncertainty
    analysis for streamflow prediction in the Kunwari River Basin,
    India, using sequential uncertainty fitting, Environ. Process., 2
    (2015) 79–95. 
-  M. Sophocleous, Interactions between groundwater and surface
    water: the state of the science, Hydrogeol. J., 10 (2002) 52–67. 
-  B. Wu, Y. Zheng, X. Wu, Y. Tian, F. Han, J. Liu, C. Zheng,
    Optimizing water resources management in large river
    basins with integrated surface water-groundwater modeling:
    a surrogate-based approach, Water Resour. Res., 51 (2015)
    2153–2173. 
-  Z. Shen, Q. Huang, Q. Liao, L. Chen, R. Liu, H. Xie, Uncertainty
    in flow and water quality measurement data: a case study in the
    Daning River watershed in the Three Gorges Reservoir region,
    China, Desal. Wat. Treat., 51 (2013) 3995–4001. 
-  S. Sevastas, I. Siarkos, N. Theodossiou, I. Ifadis, K. Kaffas,
    Comparing hydrological models built upon open access
    and/or measured data in a GIS environment, Proceedings of
    the 6th International CEMEPE and SECOTOX Conference,
    Thessaloniki, Greece, June 25–30, 2017. 
-  M. Liu, J. Lu, Predicting the impact of management practices on
    river water quality using SWAT in an agricultural watershed,
    Desal. Wat. Treat., 54 (2015) 2396–2409. 
-  G.D. Gikas, T. Yiannakopoulou, V.A. Tsihrintzis, Modeling of
    non-point source pollution in a Mediterranean drainage basin,
    Environ. Model Assess., 11 (2006) 219–233. 
-  P. Santra, B.S. Das, Modeling runoff from an agricultural
    watershed of western catchment of Chilika lake through
    ArcSWAT, J. Hydro-Environ. Res., 7 (2013) 261–269. 
-  A. Fadil, H. Rhinane, A. Kaoukaya, Y. Kharchaf, O.A. Bachir,
    Hydrologic modeling of the Bouregreg watershed (Morocco)
    using GIS and SWAT model, JGIS, 3 (2011) 279–289. 
-  J. Cho, V.A. Barone, S. Mostaghimi, Simulation of land use
    impacts on groundwater levels and streamflow in a Virginia
    watershed, Agric. Water Manage., 96 (2009) 1–11. 
-  K. Spanoudaki, A. Nanou, A.I. Stamou, G. Christodoulou,
    T. Sparks, B. Bockelmann, R.A. Falconer, Integrated surface
    water-groundwater modelling, Global NEST, 7 (2005) 281–295. 
-  I. Siarkos, P. Latinopoulos, Modeling seawater intrusion
    in overexploited aquifers in the absence of sufficient data:
    application to the aquifer of Nea Moudania, northern Greece,
    Hydrogeol. J., 24 (2016) 2123–2141. 
-  R. Srinivasan, X. Zhang, J. Arnold, SWAT ungauged:
    hydrological budget and crop yield predictions in the Upper
    Mississippi River Basin, Trans. ASABE, 53 (2010) 1533–1546. 
-  M.A. Mekonnen, A. Worman, B. Dargahi, A. Gebeyehu,
    Hydrological modelling of Ethiopian catchments using limited
    data, Hydrol. Process., 23 (2009) 3401–3408. 
-  D.R. Fuka, M.T. Walter, C. MacAlister, A.T. Degaetano,
    T.S. Steenhuis, Z.M. Easton, Using the Climate Forecast
    System Reanalysis as weather input data for watershed models,
    Hydrol. Process., 28 (2014) 5613–5623. 
-  V. Roth, T. Lemann, Comparing CFSR and conventional
    weather data for discharge and soil loss modelling with SWAT
    in small catchments in the Ethiopian highlands, Hydrol. Earth
    Syst. Sci., 20 (2016) 921–934. 
-  X. Jin, L. Zhang, J. Gu, C. Zhao, J. Tian, C. He, Modelling the
    impacts of spatial heterogeneity in soil hydraulic properties on
    hydrological process in the upper reach of the Heihe River in
    the Qilian Mountains, Northwest China, Hydrol. Process., 29
    (2015) 3318–3327. 
-  A. Boluwade, C. Madramootoo, Modeling the impacts of spatial
    heterogeneity in the castor watershed on runoff, sediment, and
    phosphorus loss using SWAT: I. Impact of spatial variability of
    soil properties, Water Air Soil Poll., 224 (2013) 1692. 
-  K. Rahman, N. Ray, G. Giuliani, C. Maringanti, C. George,
    A. Lehmann, Breaking walls towards fully open source
    hydrological modeling, Water Resour., 44 (2017) 23–30. 
-  M.L. Tan, Free internet datasets for streamflow modelling using
    SWAT in the Johor river basin, Malaysia, IOP Conf. Ser.: Earth
    Environ. Sci., 18 (2014) 012193. 
-  D.B. Othman, M. Gueddari, Hydrological study of the water
    quality of the Beja River according to the SWAT model, Desal.
    Wat. Treat., 52 (2014) 2047–2056. 
-  S.L. Neitsch, J.G. Arnold, J.R. Kiniry, J.R. Williams, Soil and
    Water Assessment Tool: Theoretical Documentation, Version
    2009, Agricultural Research Service and Texas Agrilife Research,
    Temple, Texas, USA, 2009, p. 647. 
-  J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Largearea
    hydrologic modelling and assessment: part I. Model
    development, J. Am. Water Resour. Assoc., 34 (1998) 73–89. 
-  M.G. McDonald, A.W. Harbaugh, A modular three-dimensional
    finite-difference ground-water flow model, Techniques of Water
    Resources Investigations, Book 6, USGS, Reston, VA, 2009, p. 586. 
-  N.C. Ghosh, K.D. Sharma, Groundwater Modeling and
    Management, Capital Publications, New Delhi, 2006. 
-  M. Kouli, N. Lydakis-Simantiris, P. Soupios, GIS-based aquifer
    modeling and planning using integrated geoenvironmental and
    chemical approaches, L. Konig, J. Weiss, Eds., Groundwater:
    Modeling, Management and Contamination, Nova Science
    Publishers, New York, 2009, pp. 17–77. 
-  P. Latinopoulos, Investigation and exploitation of the water
    resources in the basin of Upper Anthemountas, Research Project,
    Final Report Prepared for: Municipality of Anthemountas,
    Aristotle University of Thessaloniki, Greece, 2001. 
-  S. Sevastas, I. Siarkos, N. Theodossiou, I. Ifadis, Establishing
    wellhead protection areas and managing point and non-point
    pollution sources to support groundwater protection in the
    aquifer of Upper Anthemountas, Greece, Water Utility J., 16
    (2017) 81–95. 
-  S. Sevastas, D. Gasparatos, D. Botsis, I. Siarkos, K.I. Diamantaras,
    G. Bilas, Predicting bulk density using pedotransfer functions
    for soils in the Upper Anthemountas basin, Greece, Geoderma
    Reg., 14 (2018) e00169. 
-  N. Kazakis, K.S. Voudouris, Groundwater vulnerability and
    pollution risk assessment of porous aquifers to nitrate: modifying
    the DRASTIC method using quantitative parameters, J. Hydrol.,
    525 (2015) 13–25. 
-  N. Kazakis, G. Vargemezis, K.S. Voudouris, Estimation of
    hydraulic parameters in a complex porous aquifer system using
    geoelectrical methods, Sci. Total Environ., 550 (2016) 742–750. 
-  E. Baltas, Spatial distribution of climatic indices in northern
    Greece, Meteorol. Appl., 14 (2007) 69–78. 
-  I. Hrnjak, T. Lukić, M.B. Gavrilov, S.B. Marković, M. Unkašević,
    I. Tošić, Aridity in Vojvodina, Serbia, Theor. Appl. Climatol.,
    115 (2014) 323–332. 
-  FAO/IIASA/ISRIC/ISS-CAS/JRC, Harmonized World Soil
    Database (version 1.2), FAO, Rome, Italy and IIASA, Luxemburg,
    Austria, 2012. 
-  D.W. Nelson, L.E. Sommers, Total carbon, organic carbon,
    and organic matter, in: D.L Sparks, P.A. Helmke, A.L. Page,
    Eds., Methods of Soil Analysis - Part 3 Chemical Methods, Soil
    Science Society of America, Fitchburg, 1996, pp. 961–1010. 
-  D.W. Pribyl, A critical review of the conventional SOC to SOM
    conversion factor, Geoderma, 156 (2010) 75–83. 
-  V. Bagarello, S. Di Prima, M. Iovino, G. Provenzano, Estimating
    field‐saturated soil hydraulic conductivity by a simplified
    Beerkan infiltration experiment, Hydrol. Process., 28 (2014)
    1095–1103. 
-  H.F. ten Berge, Heat and water transfer in bare topsoil and the
    lower atmosphere, Pudoc Publications, Wageningen, 1996. 
-  K.E. Saxton, W.J. Rawls, Soil water characteristics estimates by
    texture and organic matter for hydrological solutions, Soil Sci.
    Soc. Am. J., 70 (2006) 1569–1577. 
-  J.R. Williams, The EPIC model, V.P. Singh, Ed., Computer
    Models of Watershed Hydrology, Water Resources Publications,
    Highlands Ranch, 1995, pp. 909–1000. 
-  J.J. Kaluarachchi, M.N Almasri, Conceptual model of fate and
    transport of nitrate in the extended Sumas-Blaine aquifer,
    Whatcom County, Washington, Project Report, Version 1.2,
    Utah State University, USA, 2002, p. 139. 
-  I. Ahmed, R. Umar, Groundwater flow modelling of Yamuna-Krishni interstream, a part of central Ganga Plain Uttar Pradesh,
    J. Earth Syst. Sci., 118 (2009) 507–523. 
-  S. Sevastas, I. Siarkos, N. Theodossiou, I. Ifadis, Simulating
    groundwater flow in the Upper Anthemountas basin in
    Chalkidiki applying MODFLOW and Geographic Information
    System, Proceedings of the 10th International Hydrogeological
    Congress, Thessaloniki, Greece, October 8–10, 2014. 
-  N. Veranis, C. Christidis, Hard rock aquifers of central and
    eastern Chalkidiki, region of central Macedonia, northern
    Greece, Proceedings of the 10th International Hydrogeological
    Congress, Thessaloniki, Greece, October 8–10, 2014. 
-  N. Veranis, C. Christidis, Hydrogeological conditions and
    groundwater qualities of the mountainous area of Krousia and
    Kerdyllia, Central Macedonia, N. Greece (in Greek), Proceedings
    of the 2nd Common Congress H.H.H.U. - H.C.M.H.R., Patras,
    Greece, October 11–13, 2012. 
-  E. Stavri, Settlements due to the excavation of twin tunnels
    of Thessaloniki Metro, section of New Railway Station - Agia
    Sofia (in Greek), MSc Thesis, National Technical University of
    Athens, Greece, 2013. 
-  A. Zevropoulou, Neotectonic faults of the wide area of
    Thessaloniki in association with foundation soils (in Greek),
    PhD Thesis, Aristotle University of Thessaloniki, Greece, 2010. 
-  B. Maihemuti, R. Ghasemizadeh, X. Yu, L. Padilla,
    A.N. Alshawabkeh, Simulation of regional karst aquifer system
    and assessment of groundwater resources in Manatí-Vega Baja,
    Puerto Rico, JWARP, 7 (2015) 909. 
-  M. Senthilkumar, L. Elango, Three-dimensional mathematical
    model to simulate groundwater flow in the lower Palar River
    basin, southern India, Hydrogeol. J., 12 (2004) 197–208. 
-  G. Panagopoulos, Application of MODFLOW for simulating
    groundwater flow in the Trifilia karst aquifer, Greece, Environ.
    Earth Sci., 67 (2012) 1877–1889. 
-  S.M. Yidana, Groundwater flow modeling and particle tracking
    for chemical transport in the southern Voltaian aquifers,
    Environ. Earth Sci., 63 (2011) 709–721. 
-  Z. Dokou, G.P. Karatzas, Saltwater intrusion estimation in a
    karstified coastal system using density-dependent modelling
    and comparison with the sharp-interface approach, Hydrolog.
    Sci. J., 57 (2012) 985–999. 
-  S.M. Yidana, D. Ophori, C.A. Alo, Hydrogeological characterization
    of a tropical crystalline aquifer system, J. Appl. Water
    Eng. Res., 2 (2014) 13–24. 
-  P.A. Domenico, F.W. Schwartz, Physical and Chemical
    Hydrogeology, 2nd ed., John Wiley & Sons, Inc., New York, 1998. 
-  B.B.S. Singhal, R.P. Gupta, Applied Hydrogeology of Fractured
    Rocks, 2nd ed., Springer Science & Business Media,
    Dordrecht, 2010. 
-  J. Doherty, Manual for PEST, 5th ed., Watermark, Brisbane, 2002. 
-  D. Koutsoyiannis, N. Mamassis, A. Efstratiadis, N. Zarkadoulas,
    I. Markonis, Floods in Greece, Z.W. Kundzewicz, Ed., Changes
    of Flood Risk in Europe, IAHS Press, Wallingford, 2012,
	  pp. 238–256.