References

  1. B. Narsimlu, A.K. Gosain, B.R. Chahar, S.K. Singh, P.K. Srivastava, SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting, Environ. Process., 2 (2015) 79–95.
  2. M. Sophocleous, Interactions between groundwater and surface water: the state of the science, Hydrogeol. J., 10 (2002) 52–67.
  3. B. Wu, Y. Zheng, X. Wu, Y. Tian, F. Han, J. Liu, C. Zheng, Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: a surrogate-based approach, Water Resour. Res., 51 (2015) 2153–2173.
  4. Z. Shen, Q. Huang, Q. Liao, L. Chen, R. Liu, H. Xie, Uncertainty in flow and water quality measurement data: a case study in the Daning River watershed in the Three Gorges Reservoir region, China, Desal. Wat. Treat., 51 (2013) 3995–4001.
  5. S. Sevastas, I. Siarkos, N. Theodossiou, I. Ifadis, K. Kaffas, Comparing hydrological models built upon open access and/or measured data in a GIS environment, Proceedings of the 6th International CEMEPE and SECOTOX Conference, Thessaloniki, Greece, June 25–30, 2017.
  6. M. Liu, J. Lu, Predicting the impact of management practices on river water quality using SWAT in an agricultural watershed, Desal. Wat. Treat., 54 (2015) 2396–2409.
  7. G.D. Gikas, T. Yiannakopoulou, V.A. Tsihrintzis, Modeling of non-point source pollution in a Mediterranean drainage basin, Environ. Model Assess., 11 (2006) 219–233.
  8. P. Santra, B.S. Das, Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT, J. Hydro-Environ. Res., 7 (2013) 261–269.
  9. A. Fadil, H. Rhinane, A. Kaoukaya, Y. Kharchaf, O.A. Bachir, Hydrologic modeling of the Bouregreg watershed (Morocco) using GIS and SWAT model, JGIS, 3 (2011) 279–289.
  10. J. Cho, V.A. Barone, S. Mostaghimi, Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed, Agric. Water Manage., 96 (2009) 1–11.
  11. K. Spanoudaki, A. Nanou, A.I. Stamou, G. Christodoulou, T. Sparks, B. Bockelmann, R.A. Falconer, Integrated surface water-groundwater modelling, Global NEST, 7 (2005) 281–295.
  12. I. Siarkos, P. Latinopoulos, Modeling seawater intrusion in overexploited aquifers in the absence of sufficient data: application to the aquifer of Nea Moudania, northern Greece, Hydrogeol. J., 24 (2016) 2123–2141.
  13. R. Srinivasan, X. Zhang, J. Arnold, SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin, Trans. ASABE, 53 (2010) 1533–1546.
  14. M.A. Mekonnen, A. Worman, B. Dargahi, A. Gebeyehu, Hydrological modelling of Ethiopian catchments using limited data, Hydrol. Process., 23 (2009) 3401–3408.
  15. D.R. Fuka, M.T. Walter, C. MacAlister, A.T. Degaetano, T.S. Steenhuis, Z.M. Easton, Using the Climate Forecast System Reanalysis as weather input data for watershed models, Hydrol. Process., 28 (2014) 5613–5623.
  16. V. Roth, T. Lemann, Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian highlands, Hydrol. Earth Syst. Sci., 20 (2016) 921–934.
  17. X. Jin, L. Zhang, J. Gu, C. Zhao, J. Tian, C. He, Modelling the impacts of spatial heterogeneity in soil hydraulic properties on hydrological process in the upper reach of the Heihe River in the Qilian Mountains, Northwest China, Hydrol. Process., 29 (2015) 3318–3327.
  18. A. Boluwade, C. Madramootoo, Modeling the impacts of spatial heterogeneity in the castor watershed on runoff, sediment, and phosphorus loss using SWAT: I. Impact of spatial variability of soil properties, Water Air Soil Poll., 224 (2013) 1692.
  19. K. Rahman, N. Ray, G. Giuliani, C. Maringanti, C. George, A. Lehmann, Breaking walls towards fully open source hydrological modeling, Water Resour., 44 (2017) 23–30.
  20. M.L. Tan, Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia, IOP Conf. Ser.: Earth Environ. Sci., 18 (2014) 012193.
  21. D.B. Othman, M. Gueddari, Hydrological study of the water quality of the Beja River according to the SWAT model, Desal. Wat. Treat., 52 (2014) 2047–2056.
  22. S.L. Neitsch, J.G. Arnold, J.R. Kiniry, J.R. Williams, Soil and Water Assessment Tool: Theoretical Documentation, Version 2009, Agricultural Research Service and Texas Agrilife Research, Temple, Texas, USA, 2009, p. 647.
  23. J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Largearea hydrologic modelling and assessment: part I. Model development, J. Am. Water Resour. Assoc., 34 (1998) 73–89.
  24. M.G. McDonald, A.W. Harbaugh, A modular three-dimensional finite-difference ground-water flow model, Techniques of Water Resources Investigations, Book 6, USGS, Reston, VA, 2009, p. 586.
  25. N.C. Ghosh, K.D. Sharma, Groundwater Modeling and Management, Capital Publications, New Delhi, 2006.
  26. M. Kouli, N. Lydakis-Simantiris, P. Soupios, GIS-based aquifer modeling and planning using integrated geoenvironmental and chemical approaches, L. Konig, J. Weiss, Eds., Groundwater: Modeling, Management and Contamination, Nova Science Publishers, New York, 2009, pp. 17–77.
  27. P. Latinopoulos, Investigation and exploitation of the water resources in the basin of Upper Anthemountas, Research Project, Final Report Prepared for: Municipality of Anthemountas, Aristotle University of Thessaloniki, Greece, 2001.
  28. S. Sevastas, I. Siarkos, N. Theodossiou, I. Ifadis, Establishing wellhead protection areas and managing point and non-point pollution sources to support groundwater protection in the aquifer of Upper Anthemountas, Greece, Water Utility J., 16 (2017) 81–95.
  29. S. Sevastas, D. Gasparatos, D. Botsis, I. Siarkos, K.I. Diamantaras, G. Bilas, Predicting bulk density using pedotransfer functions for soils in the Upper Anthemountas basin, Greece, Geoderma Reg., 14 (2018) e00169.
  30. N. Kazakis, K.S. Voudouris, Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters, J. Hydrol., 525 (2015) 13–25.
  31. N. Kazakis, G. Vargemezis, K.S. Voudouris, Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods, Sci. Total Environ., 550 (2016) 742–750.
  32. E. Baltas, Spatial distribution of climatic indices in northern Greece, Meteorol. Appl., 14 (2007) 69–78.
  33. I. Hrnjak, T. Lukić, M.B. Gavrilov, S.B. Marković, M. Unkašević, I. Tošić, Aridity in Vojvodina, Serbia, Theor. Appl. Climatol., 115 (2014) 323–332.
  34. FAO/IIASA/ISRIC/ISS-CAS/JRC, Harmonized World Soil Database (version 1.2), FAO, Rome, Italy and IIASA, Luxemburg, Austria, 2012.
  35. D.W. Nelson, L.E. Sommers, Total carbon, organic carbon, and organic matter, in: D.L Sparks, P.A. Helmke, A.L. Page, Eds., Methods of Soil Analysis - Part 3 Chemical Methods, Soil Science Society of America, Fitchburg, 1996, pp. 961–1010.
  36. D.W. Pribyl, A critical review of the conventional SOC to SOM conversion factor, Geoderma, 156 (2010) 75–83.
  37. V. Bagarello, S. Di Prima, M. Iovino, G. Provenzano, Estimating field‐saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment, Hydrol. Process., 28 (2014) 1095–1103.
  38. H.F. ten Berge, Heat and water transfer in bare topsoil and the lower atmosphere, Pudoc Publications, Wageningen, 1996.
  39. K.E. Saxton, W.J. Rawls, Soil water characteristics estimates by texture and organic matter for hydrological solutions, Soil Sci. Soc. Am. J., 70 (2006) 1569–1577.
  40. J.R. Williams, The EPIC model, V.P. Singh, Ed., Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, 1995, pp. 909–1000.
  41. J.J. Kaluarachchi, M.N Almasri, Conceptual model of fate and transport of nitrate in the extended Sumas-Blaine aquifer, Whatcom County, Washington, Project Report, Version 1.2, Utah State University, USA, 2002, p. 139.
  42. I. Ahmed, R. Umar, Groundwater flow modelling of Yamuna-Krishni interstream, a part of central Ganga Plain Uttar Pradesh, J. Earth Syst. Sci., 118 (2009) 507–523.
  43. S. Sevastas, I. Siarkos, N. Theodossiou, I. Ifadis, Simulating groundwater flow in the Upper Anthemountas basin in Chalkidiki applying MODFLOW and Geographic Information System, Proceedings of the 10th International Hydrogeological Congress, Thessaloniki, Greece, October 8–10, 2014.
  44. N. Veranis, C. Christidis, Hard rock aquifers of central and eastern Chalkidiki, region of central Macedonia, northern Greece, Proceedings of the 10th International Hydrogeological Congress, Thessaloniki, Greece, October 8–10, 2014.
  45. N. Veranis, C. Christidis, Hydrogeological conditions and groundwater qualities of the mountainous area of Krousia and Kerdyllia, Central Macedonia, N. Greece (in Greek), Proceedings of the 2nd Common Congress H.H.H.U. - H.C.M.H.R., Patras, Greece, October 11–13, 2012.
  46. E. Stavri, Settlements due to the excavation of twin tunnels of Thessaloniki Metro, section of New Railway Station - Agia Sofia (in Greek), MSc Thesis, National Technical University of Athens, Greece, 2013.
  47. A. Zevropoulou, Neotectonic faults of the wide area of Thessaloniki in association with foundation soils (in Greek), PhD Thesis, Aristotle University of Thessaloniki, Greece, 2010.
  48. B. Maihemuti, R. Ghasemizadeh, X. Yu, L. Padilla, A.N. Alshawabkeh, Simulation of regional karst aquifer system and assessment of groundwater resources in Manatí-Vega Baja, Puerto Rico, JWARP, 7 (2015) 909.
  49. M. Senthilkumar, L. Elango, Three-dimensional mathematical model to simulate groundwater flow in the lower Palar River basin, southern India, Hydrogeol. J., 12 (2004) 197–208.
  50. G. Panagopoulos, Application of MODFLOW for simulating groundwater flow in the Trifilia karst aquifer, Greece, Environ. Earth Sci., 67 (2012) 1877–1889.
  51. S.M. Yidana, Groundwater flow modeling and particle tracking for chemical transport in the southern Voltaian aquifers, Environ. Earth Sci., 63 (2011) 709–721.
  52. Z. Dokou, G.P. Karatzas, Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach, Hydrolog. Sci. J., 57 (2012) 985–999.
  53. S.M. Yidana, D. Ophori, C.A. Alo, Hydrogeological characterization of a tropical crystalline aquifer system, J. Appl. Water Eng. Res., 2 (2014) 13–24.
  54. P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, 2nd ed., John Wiley & Sons, Inc., New York, 1998.
  55. B.B.S. Singhal, R.P. Gupta, Applied Hydrogeology of Fractured Rocks, 2nd ed., Springer Science & Business Media, Dordrecht, 2010.
  56. J. Doherty, Manual for PEST, 5th ed., Watermark, Brisbane, 2002.
  57. D. Koutsoyiannis, N. Mamassis, A. Efstratiadis, N. Zarkadoulas, I. Markonis, Floods in Greece, Z.W. Kundzewicz, Ed., Changes of Flood Risk in Europe, IAHS Press, Wallingford, 2012, pp. 238–256.