References

  1. J.R. Alvarez-Corena, J.A. Bergendahl, F.L. Hart, Advanced oxidation of five contaminants in water by UV/TiO2: reaction kinetics and byproducts identification, J. Environ. Manage., 181 (2016) 544–551.
  2. Z. Frontistis, M. Kouramanos, S. Moraitis, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos, N.P. Xekoukoulotakis, D. Mantzavinos, UV and simulated solar photodegradation of 17α-ethynylestradiol in secondary-treated wastewater by hydrogen peroxide or iron addition, Catal. Today, 252 (2015) 84–92.
  3. E. Giannakopoulos, E. Isari, K. Bourikas, H.K. Karapanagioti, G. Psarras, G. Oron, I.K. Kalavrouziotis, Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study, J. Environ. Manage., 195 (2017) 186–194.
  4. E. Katsika, A. Moutsatsou, V. Karayannis, M. Volioti, D. Tsoukleris, Synthesis and characterization of lignite fly ash ceramic substrates coated with TiO2 slurry, and evaluation in environmental applications, J. Aust. Ceram. Soc., (In press) doi:10.1007/s41779-018-0201-8.
  5. K. Loganathan, Ozone-based advanced oxidation processes for the removal of harmful algal bloom (HAB) toxins: a review, Desal. Wat. Treat., 59 (2017) 65–71.
  6. C.A. Papadimitriou, P. Samaras, A.I. Zouboulis, M. Yiangou, G.P. Sakellaropoulos, Role of extracellular polymeric substances on two biological reactors performance treating phenol, Environ. Eng. Manage. J., 16 (2017) 1843–1852.
  7. S. Ameta, R. Ameta, Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Elsevier Science, London, 2018.
  8. N.C. Shang, Y.H. Yu, H.W. Ma, C.H. Chang, M.L. Liou, Toxicity measurements in aqueous solution during ozonation of monochlorophenols, J. Environ. Manage., 78 (2006) 216–222.
  9. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Env. Sci. Technol., 36 (2006) 1–84.
  10. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  11. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  12. M. Pera-Titus, V. García-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal., B, 47 (2004) 219–256.
  13. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  14. V. Karayannis, K. Moustakas, A. Vatalis, P. Sapalidis, A. Domopoulou, Advanced oxidation of industrial effluents under microwave irradiation: state of the art, Desal. Wat. Treat., 91 (2017) 138–145.
  15. K. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, G. Papapolymerou, Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes, Desalination, 250 (2010) 345–350.
  16. K. Ntampegliotis, A. Riga, V. Karayannis, V. Bontozoglou, G. Papapolymerou, Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions, J. Hazard. Mater., 136 (2006) 75–84.
  17. A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou, Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes, Desalination, 211 (2007) 72–86.
  18. I. Fatimah, I. Sumarlan, T. Alawiyah, Fe(III)/TiO2-montmorillonite photocatalyst in photo-Fenton-like degradation of methylene blue, Int. J. Chem. Eng. 2015 (2015) 9 pages, doi:10.1155/2015/485463.
  19. N. Philippidis, S. Sotiropoulos, A. Efstathiou, I. Poulios, Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes, J. Photochem. Photobiol., A, 204 (2009) 129–136.
  20. E. Katsika, A. Moutsatsou, V. Karayannis, A. Ntziouni, Preparation and characterization of lignite ashes coated with TiO2 for environmental application, J. Chem. Technol. Metall., 52 (2017) 940–949.
  21. Y. Chen, J. Lu, H. Han, J. Li, Y. Chen, Advances in environmental material utilization of fly ash, Chem. Bull., 76 (2013) 811–821.
  22. S. Wang, Application of solid ash based catalysts in heterogeneous catalysis, Environ. Sci. Technol., 42 (2008) 7055–7063.
  23. P.V.S. Giri Babu, G. Swaminathan, Comparative study on synergetic degradation of a reactive dye using different types of fly ash in combined adsorption and photocatalysis, J. Inst. Eng. (India) A, 97 (2016) 239–246.
  24. M. Malakootian, A. Mesdaghinia, S. Rezaei, Photocatalytic removal of o-chlorophenol by using a mixture of modified fly ash and TiO2 nanoparticles, J. Kerm. Univ. Med. Sci., 24 (2017) 147–158.
  25. L. Andronic, L. Isac, S. Miralles-Cuevas, M. Visa, I. Oller, A. Duta, S. Malato, Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water, J. Hazard. Mater., 320 (2016) 469–478.
  26. J. Shi, H. Ai, X. Wang, M. Fu, Photocatalytic degradation of diclofenac sodium over the photocatalyst of TiO2/CFA, Huanjing Kexue Xuebao/Acta Sci. Circum., 34 (2014) 370–376.
  27. M. Visa, L. Andronic, A. Duta, Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment, J. Environ. Manage., 150 (2015) 336–343.
  28. M. Visa, L. Andronic, A. Enesca, Behavior of the new composites obtained from fly ash and titanium dioxide in removing of the pollutants from wastewater, Appl. Surf. Sci., 388 (2016) 359–369.
  29. P.S. Saud, B. Pant, M. Park, S.H. Chae, S.J. Park, M. Ei-Newehy, S.S. Al-Deyab, H.Y. Kim, Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants, Ceram. Int., 41 (2015) 1771–1777.
  30. X. Cui, J. Shi, Z. Ye, Z. Zhang, B. Xu, S. Chen, Layer-by-layer assembly and photocatalytic activity of titania nanosheets on coal fly ash microspheres, Int. J. Photoenergy, 2014 (2014) 10 pages, doi:10.1155/2014/823078.
  31. H. Fan, D. Chen, X. Ai, S. Han, M. Wei, L. Yang, H. Liu, J. Yang, Mesoporous TiO2 coated ZnFe2O4 nanocomposite loading on activated fly ash cenosphere for visible light photocatalysis, RSC Adv., 8 (2018) 1398–1406.
  32. Z. Zhao, Y. Lei, W. Liu, J. Fan, D. Xue, Y. Xue, S. Yin, Fly ash cenospheres as multifunctional supports of g-C3N4/N-TiO2 with enhanced visible-light photocatalytic activity and adsorption, Adv. Powder Technol., 28 (2017) 3233–3240.
  33. J. Yang, M. Zhu, H. Chu, H. Zhou, Y. Xu, Preparation of HPW-CS/TiO2/FACS photocatalysts for degradation of tetracycline hydrochloride, Mater. Technol., 32 (2017) 647–656.
  34. G. Hou, Y. Li, W. An, S. Gao, W. Zhang, W. Cui, Fabrication and photocatalytic activity of floating type Ag3PO4/ZnFe2O4/FACs photocatalyst, Mater. Res. Bull., 94 (2017) 263–271.
  35. S. Liu, J. Zhu, Q. Yang, P. Xu, J. Ge, X. Guo, Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity, Opt. Mater., 53 (2016) 73–79.
  36. X.M. Fan, C.H. Bai, G.H. Li, Z.Y. Xu, J.K. Sheng, Z.K. Guo, Study on photocatalytic degradation of DMF by V-doped TiO2/Fly ash cenosphere, Rengong Jingti Xuebao/J. Synth. Cry., 45 (2016) 736–742.
  37. Y. Zhao, X. Zhang, X. Zhao, L. Geng, Preparation and characterization of V-TiO2/fly-ash cenospheres and its photocatalytic properties, Optoelectron. Adv. Mater. Rapid Commun., 7 (2013) 129–132.
  38. B. Wang, Z. Yang, H. An, J. Zhai, Q. Li, H. Cui, Photocatalytic activity of Pt-TiO2 films supported on hydroxylated fly ash cenospheres under visible light, Appl. Surf. Sci., 324 (2015) 817–824.
  39. A. Duta, M. Visa, Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash-TiO2 composite, J. Photochem. Photobiol., A, 306 (2015) 21–30.
  40. P. Huo, M. Zhou, X. Yan, X. Liu, Z. Lu, R. Zhang, W. Shi, Y. Yan, Preparation of PoPD modified porous TiO2/fly-ash cenosphere photocatalysts and their photocatalytic activity on ciprofloxacin antibiotics, Fresenius Environ. Bull., 23 (2014) 1860–1866.
  41. J. Song, X. Wang, Y. Bu, X. Wang, J. Zhang, J. Huang, R. Ma, J. Zhao, Photocatalytic enhancement of floating photocatalyst: layer-by-layer hybrid carbonized chitosan and Fe-N-codoped TiO2 on fly ash cenospheres, Appl. Surf. Sci., 391 (2017) 236–250.
  42. X. Yu, X. Gao, Z. Lu, X. Liu, P. Huo, X. Liu, D. Wu, Y. Yan, Preparation and photodegradation properties of transition metal ion-poly-o-phenylenediamine/TiO2/fly-ash cenospheres by ion imprinting technology, RSC Adv., 3 (2013) 14807–14813.
  43. Z. Lu, P. Huo, Y. Luo, X. Liu, D. Wu, X. Gao, C. Li, Y. Yan, Performance of molecularly imprinted photocatalysts based on fly-ash cenospheres for selective photodegradation of single and ternary antibiotics solution, J. Mol. Catal. A: Chem., 378 (2013) 91–98.
  44. J. Lv, T. Sheng, L. Su, G. Xu, D. Wang, Z. Zheng, Y. Wu, N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity, Appl. Surf. Sci., 284 (2013) 229–234.
  45. K. Kalpana, V. Selvaraj, Photodegradation and antibacterial studies of ZnS enwrapped fly ash nanocomposite for multipurpose industrial applications, RSC Adv., 5 (2015) 47766–47777.
  46. K. Kalpana, V. Selvaraj, Development of ZnS/SnS/A-FA nanorods at ambient temperature: binary catalyst for the removal of congo red dye and pathogenic bacteria from wastewater, J. Ind. Eng. Chem., 41 (2016) 105–113.
  47. H.J. Kim, M.K. Joshi, H.R. Pant, J.H. Kim, E. Lee, C.S. Kim, Onepot hydrothermal synthesis of multifunctional Ag/ZnO/fly ash nanocomposite, Colloids Surf., A, 469 (2015) 256–262.
  48. M. He, Z. Lu, W. Zhou, T. Chen, W. Shi, G. Che, P. Huo, Z. Zhu, X. Zhao, Y. Yan, A novel CdS photocatalyst based on magnetic fly ash cenospheres as the carrier: performance and mechanism, RSC Adv., 4 (2014) 60148–60157.
  49. Z. Lu, W. Zhou, P. Huo, Y. Luo, M. He, J. Pan, C. Li, Y. Yan, Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste, Chem. Eng. J., 225 (2013) 34–42.
  50. L. Lin, Y. Wang, M. Huang, D. Chen, Immobilization of BiOBr/BiOI hierarchical microspheres on fly ash cenospheres as visible light photocatalysts, Aust. J. Chem., 69 (2016) 119–125.
  51. J. Zhang, B. Wang, C. Li, H. Cui, J. Zhai, Q. Li, Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties, J. Environ. Sci., 26 (2014) 1936–1942.
  52. J. Zhang, H. Cui, B. Wang, C. Li, J. Zhai, Q. Li, Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application, Chem. Eng. J., 223 (2013) 737–746.
  53. J. Zhang, Preparation of novel Pt-BiVO4/fly ash cenospheres composites with high photocatalytic performance, Adv. Mater. Res., 1010–1012 (2014) 216–219.
  54. Y. Zhang, L. Liu, Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater, Particuology, 11 (2013) 353–358.
  55. H.C. Pang, H.Y. Fu, T.Z. Gao, Treatment of high concentration wastewater containing phenols and aldehyde from a small Phenolic resin plant, Adv. Mater. Res., 864–867 (2014) 1552–1555.
  56. L.P. Wang, X.Y. Li, X.M. Li, Dioctyl phthalate esters wastewater treatment by Fenton reagent/fly ash combined process, Adv. Mater. Res., 777 (2013) 122–126.
  57. D.S. Duc, Degradation of reactive blue 181 dye by heterogeneous Fenton technique using modified fly ash, Asian J. Chem., 25 (2013) 4083–4086.
  58. N. Wang, Q. Zhao, A. Zhang, Catalytic oxidation of organic pollutants in wastewater: via a Fenton-like process under the catalysis of HNO3-modified coal fly ash, RSC Adv., 7 (2017) 27619–27628.
  59. N. Wang, J. Chen, Q. Zhao, H. Xu, Study on preparation conditions of coal fly ash catalyst and catalytic mechanism in a heterogeneous Fenton-like process, RSC Adv., 7 (2017) 52524–52532.
  60. J. Wang, H.J. Li, Q.K. Cheng, X.T. Yan, A.Q. Cao, Q.Y. Tan, Treatment of phenol wastewater with modified coal fly ash-Fenton reagent, Adv. Mater. Res., 955–959 (2014) 623–627.
  61. D.S. Dao, N. Van Nguyen, S.T. Le, H.K. Dieu Nguyen, H. Van Hoang, K.N. Truong, T.Q. Do, H. Yamada, Iron-Modified Fly Ash as Heterogeneous Fenton-Like Catalyst for Decolorization of Reactive Blue 182 Dye, In: J. Parker, Ed., Fly Ash: Properties, Analysis and Performance, Nova Science Publishers Inc, New York, 201, pp. 237–251.
  62. D.S. Duc, T. Le Hung, D.D. Khai, Degradation of reactive blue 19 dye in aqueous solution using iron-modified fly ash, Int. J. ChemTech. Res., 9 (2016) 533–538.
  63. S.H. Chen, D.Y. Du, Degradation of n-butyl xanthate using fly ash as heterogeneous Fenton-like catalyst, J. Cent. S. Univ., 21 (2014) 1448–1452.
  64. H. Zhuang, H. Han, S. Shan, Treatment of British Gas/Lurgi coal gasification wastewater using a novel integration of heterogeneous Fenton oxidation on coal fly ash/sewage sludge carbon composite and anaerobic biological process, Fuel, 178 (2016) 155–162.
  65. Y.X. Sun, J. Zhang, Photocatalytic degradation of methyl orange and phenol by BiVO4-loaded fly ash cenospheres (FACs) composite, Adv. Mater. Res., 821–822 (2013) 471–475.
  66. M. Visa, C. Bogatu, A. Duta, Tungsten oxide – fly ash oxide composites in adsorption and photocatalysis, J. Hazard. Mater., 289 (2015) 244–256.
  67. P. Bansal, A. Verma, Synergistic effect of dual process (photocatalysis and photo-Fenton) for the degradation of Cephalexin using TiO2 immobilized novel clay beads with waste fly ash/foundry sand, J. Photochem. Photobiol., A, 342 (2017) 131–142.
  68. P. Bansal, A. Verma, Novel Fe-TiO2 composite driven dual effect for reduction in treatment time of pentoxifylline: slurry to immobilized approach, Mater. Design, 125 (2017) 135–145.
  69. X.F. Jia, W.N. Mai, X.R. Wang, J. Zhou, Advanced treatment on papermaking wastewater using photo-Fenton modified fly ash, Appl. Mech. Mater., 535 (2014) 230–236.
  70. Y. Benjelloun, A. Lahrichi, S. Boumchita, M. Idrissi, Y. Miyah, K. Anis, V. Nenov, F. Zerrouq, Removal of Crystal Violet by wet oxidation with H2O2 over an Iron oxide catalyst synthesized from Fly Ash, J. Mater. Environ. Sci., 8 (2017) 2259–2269.
  71. M. Visa, A. Duta, Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems, J. Hazard. Mater., 244–245 (2013) 773–779.
  72. M. Visa, L. Isac, A. Duta, New fly ash TiO2 composite for the sustainable treatment of wastewater with complex pollutants load, Appl. Surf. Sci., 339 (2015) 62–68.
  73. H. Wei, H. Yang, L. Zhao, K.B. Li, X.L. Yu, Enhancement of levofloxacin degradation in US/H2O2 system by addition of fly ash, Zhongguo Huanjing Kexue/China Environ. Sci., 34 (2014) 889–895.
  74. J.T. Li, R.J. Lan, B. Bai, Y.L. Song, Ultrasound-promoted degradation of acid brown 348 by Fenton-like processes, Asian J. Chem., 25 (2013) 2246–2250.
  75. Y.A.J. Al-Hamadani, C.M. Park, L.N. Assi, K.H. Chu, S. Hoque, M. Jang, Y. Yoon, P. Ziehl, Sonocatalytic removal of ibuprofen and sulfamethoxazole in the presence of different fly ash sources, Ultrason. Sonochem., 39 (2017) 354–362.
  76. M.R. Bečelić-Tomin, B.D. Dalmacija, D.D. Tomašević, J.J. Molnar, L.M. Rajić, Application of pyrite ash in the microwave Fenton process of decolorization of synthetic color solution, Hem. Ind., 67 (2013) 399–409.
  77. G. Li, W. Zhao, B. Wang, Q. Gu, X. Zhang, Synergetic degradation of Acid Orange 7 by fly ash under ultrasonic irradiation, Desal. Wat. Treat., 57 (2016) 2167–2174.
  78. W. Ma, P. Zong, Z. Cheng, B. Wang, Q. Sun, Adsorption and biosorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water, J. Hazard. Mater., 266 (2014) 19–25.
  79. X. He, C.B. Leng, Y.H. Zhang, A comparison of heterogeneous reaction kinetics of oleic acid thin film and oleic acid coated flyash with ozone using vacuum FTIR, Guang Pu Xue Yu Guang Pu Fen Xi/Spectr. Spectr. Anal., 36 (2016) 1576–1580.
  80. H. Zhuang, S. Shan, J. Guo, Y. Han, C. Fang, Waste rice straw and coal fly ash composite as a novel sustainable catalytic particle electrode for strengthening oxidation of azo dyes containing wastewater in electro-Fenton process, Environ. Sci. Pollut. Res., 24 (2017) 27136–27144.
  81. K. Thirumalai, S. Balachandran, M. Swaminathan, Superior photocatalytic, electrocatalytic, and self-cleaning applications of fly ash supported ZnO nanorods, Mater. Chem. Phys., 183 (2016) 191–200.
  82. S. Nachiappan, K.P. Gopinath, Treatment of pharmaceutical effluent using novel heterogeneous fly ash activated persulfate system, J. Environ. Chem. Eng., 3 (2015) 2229–2235.
  83. Y. Liu, J. Yuan, Coagulate-catalytic oxidation treatment of high concentrated drilling wastewater, Chin. J. Environ. Eng., 7 (2013) 108–112.