References
- A. Cubukcu, E. Kaya, O. Ozyaral, Environments Problems
Caused by Cebeci Aggregate Quarries and Rehabilitation
Works, In: 12th International Multidisciplinary Scientific
GeoConference and EXPO – Modern Management of Mine
Producing, Geology and Environmental Protection, SGEM
2012, vol. 5, 2012, pp. 337–345.
- R. Hu, J. Liu, M. Zhai, A Roadmap for Scientific and Technological
Development of Solid Mineral Resources in China to 2050,
Mineral Resources Science in China: A Roadmap to 2050,
Springer, Berlin, Heidelberg, Chapter 2, 2010, pp. 11–82.
- G.T. Goudouva, A.A. Zorpas, Water Footprint determination by
quarry operation in island regions, Desal. Wat. Treat., 86 (2017)
271–2764.
- R. Sinha, D.K. Pandey, A.K. Sinha, Mining and the environment:
a case study from Bijolia quarrying site in Rajasthan, India.
Environmentalist, 20 (2000) 195–203.
- M. Tillotson, J. Liu, D. Guan, P. Wu, X. Zhao, G. Zhang, S.
Pfister, M. Pahlow, Water Footprint Symposium: where next for
water footprint and water assessment methodology?, Int. J. Life
Cycle Assess., 19 (2014) 1561–1565.
- E. Diaz, J. Fernandez, S. Ordonez, N. Cantob, A. Gonzalez,
Carbon and ecological footprints as tools for evaluating the
environmental impact of coal mine ventilation air, Ecol. Indic.,
18 (2012) 126–130.
- A. Galli, T. Wiedmannb, E. Ercin, D. Knoblauchd, B. Ewinge,
S. Giljumf, Integrating Ecological, Carbon and Water footprint
into a “Footprint Family” of indicators: definition and role in
tracking human pressure on the planet, Ecol. Indic., 16 (2011)
100–112.
- J. Venetoulis, J. Talberth, Refining the ecological footprint,
Environ. Dev. Sustainability, 10 (2008) 441–469.
- D. Pandey, M. Agrawal, J.S. Pandey, Carbon footprint: current
methods of estimation, Environ. Monit. Assess., 178 (2011) 135–160.
- N. Palletier, K. Allacker, R. Pant, S. Manfredi, The European
Commission Organisation Environmental Footprint method:
comparison with other methods, and rationales for key
requirements, Int. J. Life Cycle Assess., 19 (2014) 387–404.
- B. Ryan, Ecological footprint analysis: an Irish rural study, Irish
Geogr., 37 (2004) 223–235.
- M. Wackernagel, J.D. Yount, Footprints for sustainability: the
next steps, Environ. Dev. Sustainability, 2 (2000) 23–44.
- J. Wintergreen, T. Delaney, ISO 14064 International Standard for
GHG Emission Inventories and Verification, 2009.
- ISO/TS 14067:2013, Greenhouse gases – carbon footprint of
products – requirements and guidelines for quantification and
communication, 1st ed., Technical Specification, 2013.
- M. Chavan, An appraisal of environment management systems:
a competitive advantage for small businesses, Manage. Environ.
Qual., 16 (2005) 444–463.
- F. Testa, F. Rizzi, T. Daddi, M.N. Gusmerotti, M. Frey, F. Iraldo,
EMAS and ISO 14001: the differences in effectively improving
environmental performance, J. Cleaner Prod., 68 (2014) 165–173.
- I. Voukkali, P. Loizia, Policies and Legislation, A.A. Zorpas, Ed.,
Sustainability Behind Sustainability, Nova Science Publishers
Inc., New York, USA, 2015, pp. 7–16.
- T. Daddi, F. Testa, M. Frey, F. Iraldo, Exploring the link between
institutional pressures and environmental management
systems effectiveness: an empirical study, J. Environ. Manage.,
183 (2016) 647–656.
- T. Daddi, M. Frey, M.R. De Giacomo, F. Iraldo, F. Testa, Macroeconomic
and development indexes and ISO14001 certificates:
a cross national analysis, J. Cleaner Prod., 108 (2015) 1239–1248.
- T. Tambovceva, I. Geipele, Environmental management systems
experience among Latvian construction companies, Technol.
Econ. Dev. Econ., 17 (2011) 595–610.
- I. Voukkali, P. Loizia, D. Mihaela-Pociovalisteanu, A.A. Zorpas,
Barriers and difficulties concerning the implementation of an
environmental management system in a bakery-confectionary
industry in Cyprus for 8 years, Environ. Process, 4 (2017)
263–275.
- G. Brent, Quantifying eco-efficiency within life cycle management
using a process model of strip coal mining, Int. J. Mining,
Reclam. Environ., 25 (2011) 258–273.
- IES, European Commission Institute for Environment and
Sustainability (IES), Analysis of existing Environmental
Footprint methodologies for products and organizations:
Recommendations, Rationale and Alignment, Joint Research
Center, Italy, 2011.
- International Organization for Standardization, “ISO 14064”,
Geneva, Switzerland, 2006.
- M. Finkbeiner, The International Standards as the Constitution
of Life Cycle Assessment: The ISO 14040 Series and its
Offspring, Background and Future Prospects in Life Cycle
Assessment, LCA Compendium – The Complete World of Life
Cycle Assessment, Springer, Dordrecht, Heidelberg, New York,
London, Chapter 3, 2014, pp. 85–104.
- Commission Decision, Commission Decision on 3 of May
Replacing Decision 94/3/EC Establishing a List of Wastes
Pursuant to Article 1(a) of Council Directive 75/442/EEC
on Waste and Council Decision 94/904/EC Establishing
a List of Hazardous Waste Pursuant to Article 1(4) of
Council Directive 91/689/EEC on hazardous, Available at:
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=
CONSLEG:2000D0532:20020101:EN:PDF, 2000 (accessed on
July 2016).
- M. Sairanen, M. Rinne, O. Selonen, A review of dust emission
dispersion in rock aggregate and natural stone quarries,
Int. J. Mining Reclam. Environ., 32 (2107) 196–220, doi:
10.1080/17480930.2016.1271385.
- C.T. Chang, Assessment of influential range and characteristics
of fugitive dust in limestone extraction process, J. Air Waste
Manage. Assoc., 54 (2004) 141–148.
- E. Petavratzi, S.W. Kingman, I. Lowndes, Particulates from
mining operations: a review of sources, effects and regulations,
Miner. Eng., 18 (2005) 1183–1199.
- C.A. Iii, Pope, mortality effects of longer term exposure to
fine particulate air pollution; review of recent epidemiological
evidence, Inhal. Toxicol., 19 (2007) 33–38.
- N. Vinod, L. Swarna, M. Mahesh, Morbidity profile of stone
crusher workers with special reference to respiratory morbidity
– a cross sectional study, Nat. J. Commun. Med., 3 (2012)
368–371.
- M.M. Draid, K.M. Ben-Elhaj, A.M. Ali, K.K. Schmid, S.G. Gibbs,
Lung function impact from working in the pre-revolution
Libyan quarry industry, Int. J. Environ. Res. Public Health, 12
(2015) 5006–5012.
- World Health Organization, Hazard Prevention and Control
in the Work Environment: Airborne Dust, World Health
Organization, Switzerland, WHO/SDE/OEH/99.14, 1999,
pp. 1–31. (April 2017) Available at: http://www.who.int/occupational_health/publications/en/oehairbornedust3.pdf.
- K. Nakajima, K. Nansai, K. Matsubae, M. Tomita, W. Takayanagi,
T. Nagasaka, Global land-use change hidden behind nickel
consumption, Sci. Total Environ., 586 (2017) 730–737.
- A. Wadood Moomen, Strategies for managing large-scale
mining sector land use conflicts in the global south, Resour.
Policy, 51 (2017) 85–93.
- H. Meuser, Rehabilitation of soils in mining and raw material
extraction areas, Soil Remed. Rehabil. Environ. Pollut., 23 (2013)
37–126.
- V. Macicasan, L. Muntean, G. Rosian, C. Malos, R. Mihaiescu,
N. Baciu, An integrated geomorphological approach for quarry
rehabilitation (Aghires mining area, Romania), Carpathian J.
Earth Environ. Sci., 8 (2013) 187–198.
- M. Proto, O. Malandrino, S. Supino, The Integration of Quality
Management and Environmental Management Systems,
Product-Oriented Environmental Management Systems
(POEMS), Springer, Dordrecht, The Netherland, Chapter 2,
2013, pp. 29–53.
- L. Tole, G. Koop, Estimating the impact on efficiency of the
adoption of a voluntary environmental standard: an empirical
study of the global copper mining industry, J. Prod. Anal.,
39 (2013) 35–45.