References
- N.N.N.A. Rahman, M. Shahadat, C.A. Won, F.M. Omar, FTIR
study and bioadsorption kinetics of bioadsorbent for the
analysis of metal pollutants, RSC Adv., 4 (2014) 58156–58163.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
- Z. Li, Y. Wang, N. Wu, Q. Chen, K. Wu, Removal of heavy
metal ions from wastewater by a novel HEA/AMPS copolymer
hydrogel: preparation, characterization, and mechanism,
Environ. Sci. Pollut. Res., 20 (2013) 1511–1525.
- S. Veli, B. Alyüz, Adsorption of copper and zinc from aqueous
solutions by using natural clay, J. Hazard. Mater., 149 (2007)
226–233.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- S.T. Ramesh, N. Rameshbabu, R. Gandhimathi, P.V. Nidheesh,
M. Srikanth Kumar, Kinetics and equilibrium studies for the
removal of heavy metals in both single and binary systems
using hydroxyapatite, Appl. Water. Sci., 2 (2012) 187–197.
- K.R. Shoueir, A. Sarhan, A.M. Atta, M.A. Akl, Adsorption
studies of Cu2+ onto poly (vinyl alcohol)/poly (acrylamide-conisopropylacrylamide)
core–shell nanogels synthesized through
surfactant-free emulsion polymerization, Sep. Sci. Technol., 51
(2016) 1605–1617.
- T. Vengris, R. Binkiene, A. Sveikauskaite, Nickel, copper and
zinc removal from wastewater by a modified clay sorbent,
Appl. Clay Sci., 18 (2001) 183–190.
- R. Soleyman, A. Pourjavadi, A. Monfared, Z. Khorasani, Novel
salep-based chelating hydrogel for heavy metal removal
from aqueous solutions, Polym. Adv. Technol., 27 (2016)
999–1005.
- I.-H. Lee, Y.-C. Kuan, J.-M. Chern, Equilibrium and kinetics of
heavy metal ion exchange, J. Chin. Inst. Chem. Eng., 38 (2007)
71–84.
- A. Graillot, D. Bouyer, S. Monge, J.J. Robin, P. Loison, C. Faur,
Sorption properties of a new thermosensitive copolymeric
sorbent bearing phosphonic acid moieties in multi-component
solution of cationic species, J. Hazard. Mater., 260 (2013)
425–433.
- B.L. Rivas, E. Pereira, R. Cid, K.E. Geckeler, Polyelectrolyteassisted
removal of metal ions with ultrafiltration, J. Appl.
Polym. Sci., 95 (2005) 1091–1099.
- Q. Qu, Q. Gu, Z. Gu, Y. Shen, C. Wang, X. Hu, Efficient removal
of heavy metal from aqueous solution by sulfonic acid
functionalized nonporous silica microspheres, Colloid Surface
A., 415 (2012) 41–46.
- A. Yakar, Synthesis of poly(N-methylol methacrylamide/vinyl
sulfonic acid) hydrogels for heavy metal ion removal, Bull.
Korean Chem. Soc., 35 (2014) 3063–3070.
- S.D. Alexandratos, Ion-exchange resins: a retrospective from
industrial and engineering chemistry research, Ind. Eng. Chem.
Res., 48 (2009) 388–398.
- Q. Zhu, Z. Li, Hydrogel-supported nanosized hydrous manganese
dioxide: synthesis, characterization, and adsorption
behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water,
Chem. Eng. J., 281 (2015) 69–80.
- S. Çavuş, G. Yaşar, Y. Kaya, Z.B. Gönder, G. Gürdağ,
I. Vergili, Synthesis and characterization of gel beads basedon
ethyleneglycol dimethacrylate and2-acrylamido-2-methyl-
1-propane sulfonic acid: removal of Fe(II), Cu(II), Zn(II), and
Ni(II) from metal finishing wastewater, Process Saf. Environ.,
103 (2016) 227–236.
- T.M. Zewail, N.S. Yousef, Kinetic study of heavy metal ions
removal by ion exchange in batch conical air spouted bed,
Alexandria Eng. J., 54 (2015) 83–90.
- D. Kołodynska, J. Krukowska-Bak, J. Kazmierczak-Razna,
R. Pietrzak, Uptake of heavy metal ions from aqueous solutions
by sorbents obtained from the spent ion exchange resins,
Micropor. Mesopor. Mat., 244 (2017) 127–136.
- B. Podkoscielna, A. Bartnicki, B. Gawdzik, New crosslinked
hydrogels derivatives of 2-hydroxyethyl methacrylate:
synthesis, modifications and properties, Express Polym. Lett.,
6 (2012) 759–771.
- P. Souda, L. Sreejith, Poly (acrylate -acrylic acid-co-maleic acid)
hydrogel: a cost effective and efficient method for removal of
metal ions from water, Sep. Sci. Technol., 48 (2013) 2795–2803.
- R.K. Farag, S.M. EL-Saeed, M.E. Abdel-Raouf, Synthesis and
investigation of hydrogel nanoparticles based on natural
polymer for removal of lead and copper(II) ions, Desal. Wat.
Treat., 57 (2016) 16150–16160.
- I. Clara, R. Lavanya, N. Natchimuthu, pH and temperature
responsive hydrogels of poly(2-acrylamido-2-methyl-1- propanesulfonic
acid-co-methacrylic acid): synthesis and swelling
characteristics, J. Macromol. Sci. A, 53 (2016) 492–499.
- J.L. Zamarripa–Ceron, J.C. Garcia-Cruz, A.C. Martinez-Arellano,
C.F. Castro–Guerrero, M.E. Angeles-San Martin, A.B. Morales–
Cepeda, Heavy metal removal using hydroxypropyl cellulose
and polyacrylamide gels, kinetical study, J. Appl. Polym. Sci.,
133 (2016) 43285.
- L. Zhu, L. Zhang, Y. Tang, Synthesis of organo-montmorillonite/
sodium alginate graft poly(acrylic acid -co-2-acrylamido-2-
methyl-1-propane sulfonic acid) superabsorbent composite
and its adsorption studies, Polym. Polym. Compos., 22 (2014)
417–422.
- L. Zhu, L. Zhang, Y. Tang, X. Kou, Synthesis of sodium alginate
graft poly (acrylic acid-co-2-acrylamido-2-methyl-1-propane
sulfonic acid)/attapulgite hydrogel composite and the study of
its adsorption, Poly-Plast Technol., 53 (2014) 74–79.
- S. Çavuş, G. Gürdağ, Competitive heavy metal removal by
poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-itaconic
acid), Polym. Adv. Technol., 19 (2008) 1209–1217.
- M. Alkan, M. Karadaş, M. Doğan, Ö. Demirbaş, Adsorption of
CTAB onto perlite samples from aqueous solutions, J. Colloid
Interface Sci., 291 (2005) 309–318.
- Y. Zheng, D. Huang, A. Wang, Chitosan-g-poly(acrylic acid)
hydrogel with crosslinked polymeric networks for Ni2+
recovery, Anal. Chim. Acta, 687 (2011) 193–200.
- Z. Aksu, E. Kabasakal, Batch adsorption of 2,4-dichloropheoxyacetic
acid (2,4-D) from aqueous solutionby granular activated
carbon, Sep. Purif. Technol., 35 (2004) 223–240.
- S. Lagregren, About the theory of so-called adsorption of
soluble substances, K. Sven.Vetensk. Handl., 24 (1898) 1–39.
- H. Chen, A. Wang, Adsorption characteristics of Cu(II) from
aqueous solution onto poly(acrylamide)/attapulgite composite,
J. Hazard. Mater., 165 (2009) 223–231.
- R.K. Gautam, A. Mudhoo, G. Lofrano, M.C. Chattopadhyaya,
Biomass-derived biosorbents for metal ions sequestration:
adsorbent modification and activation methods and adsorbent
regeneration, J. Environ. Chem. Eng., 2 (2014) 239–259.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and
thermodynamic investigations of Ni(II), Cd(II), Cu(II) and
Co(II) adsorption on barley straw ash, Water Resour. Ind., 6
(2014) 1–17.
- A.K. Saikia, S. Aggarwal, U.K. Mandal, Electrically induced
swelling and methylene blue release behavior of poly(Nisopropylacrylamide-
co-acrylamido-2-methylpropylsulphonic
acid) hydrogel, Colloid Polym. Sci., 293 (2015) 3533–3544.
- A. El-Hag Ali, Removal of heavy metals from model wastewater
by using carboxymethyl cellulose/2-acrylamido-2-methyl propane
sulfonic acid hydrogels, J. Appl. Polym. Sci., 123 (2012)
763–769.
- A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslan,
Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from
aqueous solution on Amberlite IR-120 synthetic resin, J. Colloid
Interface. Sci., 282 (2005) 20–25.
- S.T. Breviglieri, E.T.G. Cavalheiro, G.O. Chierice, Correlation
between ionic radius and thermal decomposition of Fe(II),Co(II),
Ni(II), Cu(II) and Zn(II) diethanoldithiocarbamates, Thermochim.
Acta, 356 (2000) 79–84.
- Y.-S. Ho, Review of second-order models for adsorption
systems, J. Hazard. Mater. B, 136 (2006) 681–689.
- D. Kumar, J.P. Gaur, Chemical reaction and particle diffusionbased
kinetic modeling of metal biosorption by a phormidium
sp-dominated cyanobacterial Mat, Bioresour. Technol., 102
(2011) 633–640.
- I. Vergili, Z.B. Gönder, Y. Kaya, G. Gürdağ, S. Çavuş, Sorption
of Pb (II) from battery industry wastewater using a weak acid
cation exchange resin, Process Saf. Environ., 107 (2017) 498–507.
- S. Rengaraj, J.-W. Yeon, Y. Kim, Y. Jung, Y.-K. Ha, W.-H. Kim,
Adsorption characteristics of Cu(II) onto ion exchange resins
252H and 1500H: kinetics, isotherms and error analysis,
J. Hazard. Mater., 143 (2007) 469–477.