References

  1. W.J. Gangloff, D.G. Westfall, G.A. Peterson, J.J. Mortvedt, Mobility of organic and inorganic zinc fertilizers in soils, Commun. Soil Sci. Plant Anal., 37 (2006) 199–209.
  2. Regulation (EC) No. 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilisers. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32003R2003 (Accessed 30 October 2017).
  3. D. Kołodyńska, Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste waters, Expanding Issues in Desalination, Vol. 17, InTech, Croatia, 2011, pp. 339–270.
  4. I.S.S. Pinto, I.F.F. Neto, H.M.V. Soaes, Biodegradable chelating agents for industrial, domestic and agriculture application-a review, Environ. Sci. Pollut. Res., 21 (2014) 11893–11906.
  5. E. Sylwester, Effect of EDTA on plutonium migration, J. Radioanal. Nucl. Chem., 250 (2001) 47–53.
  6. M. Sillanpaa, Environmental fate of EDTA and DTPA, Rev. Environ. Contam. Toxicol., 132 (1997) 85–105.
  7. L. Chen, T. Liu, C. Ma, Metal complexation and biodegradation of EDTA and S,S-EDDS: a density functional theory study, J. Phys. Chem. A, 114 (2010) 443–454.
  8. M. Gomez-Gallego, D. Pellico, P. Ramirez-Lopez, M.J. Mancheno, S. Romano, M.C. de la Torre, M.A. Sierra, Understanding of the mode of action of FeIII–EDDHA as iron chlorosis corrector based on its photochemical and redox behavior, Chem. Eur. J., 11 (2005) 5997–6005.
  9. J.J. Lucena, R.L. Chaney, Synthetic iron chelates as substrates of root ferric chelate reductase in green stressed cucumber plants, J. Plant Nutr., 29 (2006) 423–439.
  10. L. Hernaandez-Apaolaza, S. Garciaa-Marco, P. Nadal, J.J. Lucena, Structure and fertilizer properties of byproducts formed in the synthesis of EDDHA, J. Agric. Food Chem., 54 (2006) 4355–4363.
  11. F. Yunta, S. Garcıa-Marco, J.J. Lucena, Chelating agents related to ethylenediamine bis(2 hydroxyphenyl)acetic acid (EDDHA): synthesis, characterization, and equilibrium studies of the free ligands and their Mg2+, Ca2+, Cu2+, and Fe3+ chelates, Inorg. Chem., 42 (2003) 5412–5421
  12. P. Apicella, S. Cascone, F. De Santis, G. Lamberti, Iron chelates: production processes and reaction evolution analysis, Chem. Eng. Commun., 203 (2016) 861–869.
  13. S. López-Rayo, P. Nadal, J.J. Lucena, Novel chelating agents for iron, manganese, zinc, and copper mixed fertilisation in high pH soil-less cultures, J. Sci. Food Agric., 96 (2016) 1111–1120.
  14. A. Alvarez-Fernandez, S. Garcia-Marco, J.J. Lucena, Evaluation of synthetic iron(III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis, Eur. J. Agron., 22 (2005) 119–130.
  15. A. Alvarez-Fernandez, M.A. Cremonini, M.A. Sierra, G. Plaucucci, J.J. Lucena, Nature of impurities in fertilizers containing EDDHMA/Fe3+, EDDHSA/Fe3+, and EDDCHA/Fe3+ chelates, J. Agric. Food Chem., 50 (2002) 284–290.
  16. W.D.C. Schenkeveld, A.M. Reichwein, E.J.M. Temminghoff, W.H. van Riemsdijk, The behavior of EDDHA isomers in soils as influenced by soil properties, Plant Soil, 290 (2007) 85–102.
  17. W.D.C. Schenkeveld, E. Hoffland, A.M. Reichwein, E.J.M. Temminghoff, W.H. van Riemsdijk, The biodegradability of EDDHA chelates under calcareous soil conditions, Geoderma, 173 (2012) 282–288.
  18. H.E. Petree, J. Stutts, Iron Complexes of Ethylene-bis-({α-2- Hydroxyaryl Acetic Acids), United States Patent 3903119 A, 1975.
  19. H.E. Petree, J. Stutts, Treatment of Iron Deficiencies in Plants with Iron Complexes of Ethylene-bis-(α-Imino-2-Hydroxyaryl Acetic Acids), United States Patent 3981712 A, 1976.
  20. E. Klem-Marciniak, T. Olszewski, K. Hoffmann, M. Huculak- Mączka, D. Popławski, Mannich reaction application to obtain the fertilizer chelates, Proc. ECOpole, 10 (2016) 165–171 (in Polish).
  21. PN-88/C-05561:1988 – Water and Wastewater – Testing of Aerobic Biodegradation of Organic Compounds in Water in Static Conditions Test, Polish Committee for Standardization.
  22. OECD Guideline for Testing of Chemicals, Adopted by the Council on 17th July 1992, Ready Biodegradability, Available at: www.oecd.org/dataoecd/17/16/1948209.pdf (Accessed 30 October 2017).
  23. M. Huculak, M. Borowiec, J. Skut, K. Hoffmann, J. Hoffmann, Study on the aerobic biodegradation of chelating agents under the static conditions, Ecol. Chem. Eng. A, 16 (2009) 1135–1143.
  24. PN-C-04616-10:1987 – Water and Wastewater – Breeding of Standard Activated Sludge in Laboratory Conditions, Polish Committee for Standardization.
  25. ISO 6060:2006 – Water Quality – Determination of the Chemical Oxygen Demand, Polish Committee for Standardization.
  26. E. Klem-Marciniak, K. Hoffmann, J. Hoffmann, M. Porwoł, Study of biodegradation of fertilizer chelators in water under kinetic test conditions, Przem. Chem., 96 (2017) 2253–2255 (in Polish).
  27. J.P. Albano, W.B. Miller, Photodegradation of FeDTPA in nutrient solution. I. Effects of irradiance, wavelength and temperature, Hortscience, 36 (2001) 313–316.
  28. J.P. Albano, W.B. Miller, Ferric ethylenediamine-tertaacetic acid photodegradation in a commercially produced soluble fertilizer affects iron uptake in tomato, HortTechnology, 13 (2003) 289–292.
  29. T. Egli, Biodegradation of metal-complexing aminopolycarboxylic acid, J. Biosci. Bioeng., 92 (2001) 89–97.
  30. L. Hernandez-Apaolaza, J.J. Lucena, Influence of irradiation time and solution concentration on the photochemical degradation of EDDHA/Fe3+: effect of its photodecomposition products on soybean growth, J. Sci. Food Agric., 91 (2011) 2024–2030.