References

  1. M. Bodzek, M. Dudziak, K. Luks-Betlej, Application of membrane techniques to water purification. Removal of phthalates, Desalination, 162 (2004) 121–128.
  2. SAICM – ICCM3 Emerging Issues – ISDE Nomination EPPP – November 2010, Rev. August 2011. Available at: http://www.lakareformiljon.org/attachments/354_SAICM%20ICCM%20Emerging%20Issues%20ISDE%20Proposal%20EPPP%20Version%20Aug%2023%202011
  3. .pdf.
  4. Pharmaceuticals in the Environment – The Global Perspective. Occurrence, Effects, and Potential Cooperative Action Under SAICM, German Environment Agency, Dessau-Roßlau, 2014.
  5. Available at: https://pubchem.ncbi.nlm.nih.gov.
  6. USFW, U.S. Fish and Wildlife Service Research Information Bulletin, No. 84-78, U.S. Department of the Interior, Washington, D.C., 1984.
  7. M. Zelenakova, Ed., Water Management and the Environment: Case Studies. WINEC 2017, Vol. 86, Water Science and Technology Library, Springer, Cham, 2018.
  8. Y. Suzuki, K. Komori, N. Nakada, A. Harada, Status of Pharmaceuticals and Personal Care Products (PPCPs) in River Water and Wastewater and Evaluation of Their Effects on Aquatic Organisms, Public Works Research Institute. Available at: https://www.niph.go.jp/soshiki/suido/pdf/h21JPUS/abstract/r3-3.pdf.
  9. C.T.A. Moermond, Environmental Risk Limits for Pharmaceuticals, Derivation of WFD Water Quality Standards for Carbamazepine, Metoprolol, Metformin and Amidotrizoic acid, RIVM Letter Report 270006002/2014. Available at: https://www.rivm.nl/bibliotheek/rapporten/270006002.pdf
  10. M. Grung, T. Källqvist, K. Thomas, Initial Assessment of Eleven Pharmaceuticals Using the EMEA Guideline in Norway, Statens forurensningstilsyn (SFT), Oslo, 2006.
  11. K. Sosnowska, K. Styszko-Grochowiak, J. Gołaś, Leki w środowisku – źródła, przemiany, zagrożenia, IV Krakowska Konferencja Młodych Uczonych, 17–19 września 2009, Sympozja i Konferencje KKMU nr 4, AGH Kraków, 2009, pp. 395–404 (in Polish).
  12. U. Memmert, A. Peither, R. Burri, K. Weber, T. Schmidt, P. Sumpter, A. Hartmann, Diclofenac: new data on chronic toxicity and bioconcentration in fish, Environ. Toxicol. Chem., 32 (2013) 442–452.
  13. M. Cleuvers, Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects, Toxicol. Lett., 142 (2003) 185–194.
  14. B. Ferrari, N. Paxéus, R.L. Giudice, A. Pollio, J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
  15. R. Triebskorn, H. Casper, A. Heyd, R. Eikemper, H.R. Köhler, J. Schwaiger, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol., 68 (2004) 151–166.
  16. E. Praskova, L. Plhalova, L. Chromcova, S. Stepanova, I. Bedanova, I. Blahova, M. Hostovsky, M. Skoric, P. Maršálek, E. Voslarova, Z. Svobodova, Effects of subchronic exposure of diclofenac on growth, histopathological changes, and oxidative stress in Zebrafish (Danio rerio), Sci. World J., 2014 (2014) 1–5.
  17. K. Kümmerer, Ed., Pharmaceuticals in the Environment: Sources, Fate, Effects and Risk, Springer-Verlag, Berlin, 2008.
  18. Z.H. Li, T. Randak, Residual pharmaceutically active compounds (PhACs) in aquatic environment – status, toxicity and kinetics: a revive, Veterinární Medicína, 52 (2009) 295–314.
  19. M. Cleuvers, Aquatische Ökotoxikologie ausgewählter Arzneimittel. Algentest und akuter Daphnientest, UWSF – Z. Umweltchem Ökotox, 14 (2002) 85–89.
  20. M. Cleuvers, Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen and acetylsalicylic acid, Ecotoxicol. Environ. Saf., 59 (2004) 309–315.
  21. IUCLID Dataset Substance 15687-27-1, Ibuprofen, ECB, 2000. Available at: http://ecb.jrc.it/IUCLID-Data-Sheet/15687271.pdf.
  22. R. Nesbitt, Effects of Chronic Exposure to Ibuprofen and Naproxen on Florida Flagfish (Jordanella floridae) over One Complete Life-Cycle, The Faculty of Science University of Ontario Institute of Technology, Ontario, 2011. Available at: https://ir.library.dc-uoit.ca/bitstream/10155/176/1/Nesbitt_Richard.pdf.
  23. Available at: https://www.astrazeneca.com/content/dam/az/our-company/Sustainability/2017/Naproxen.pdf.
  24. VSDB: Veterinary Substances DataBase. Available at: https://sitem.herts.ac.uk/aeru/vsdb/.
  25. M. De Liguoro, V. Di Leva, M. Dalla Bona, R. Merlanti, G. Caporale, G. Radaelli, Sublethal effects of trimethoprim on four freshwater organisms, Ecotoxicol. Environ. Saf., 82 (2012) 114–121.
  26. P. Kim, Y. Park, K. Ji, J. Seo, S. Lee, K. Choi, Y. Kho, J. Park, K. Choi, Effect of chronic exposure to acetaminophen and lincomycin on Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa, and potential mechanisms of endocrine disruption, Chemosphere, 89 (2012) 10–18.
  27. Available at: www.msds-gsk.com/GetSdsFile.ashx?fileId=3998.
  28. Available at: http://www.wikipharma.org/api_data.asp.
  29. B. Ferrari, R. Mons, B. Vollat, B. Fraysse, N. Paxe´us, R. Lo Giudice, A. Pollio, J. Garric, Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?, Environ. Toxicol. Chem., 23 (2004) 1344–1354.
  30. N.J. Ayscough, J. Fawell, G. Franklin, W. Young, Review of Human Pharmaceuticals in the Environment, Research and Development Technical Report P390, Environment Agency, Bristol, 2000.
  31. T. Heberer, Tracking persistent pharmaceutical residues from municipal sewage to drinking water, J. Hydrol., 266 (2002) 175–189.
  32. R. Andreozzi, R. Marotta, N. Paxéus, Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment, Chemosphere, 50 (2003) 1319–1330.
  33. K.V. Thomas, K. Langford, M. Grung, M. Schlabach, C. Dye, Occurrence of Selected Pharmaceutical in Wastewater Effluents from Hospitals (Ullevål and Rikshospitalet) and VEAS Wastewater Treatment Works, TA-2246/2007. Available at: https://brage.bibsys.no/xmlui/bitstream/handle/11250/213547/5376-2007_72dpi.pdf.
  34. K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 76 (2006) 122–159.
  35. C. Schneider, B. Kuch, M. Braun, J.W. Metzger, Pharmaceuticals in Landfill Leachates and Receiving WWTP Influents, ISWA, University of Stuttgart, Germany. Available at: http://www.iswa.uni-stuttgart.de/ch/publikationen/download_Poster_ch/setac04_pharmaceuticals_in_landfill_leachates.pdf.
  36. J. Bernier, Ed., Effectiveness of Conventional and Advanced In Situ Leachate Treatment, Report prepared for Environment, QC Canada, Québec, 2014.
  37. E. Garcia-Lor, J.V. Sancho, R. Serrano, F. Hernandez, Occurrence and removal of pharmaceutical in wastewater treatment plants at the Spanish Mediterranean area of Valencia, Chemosphere, 87 (2012) 453–462.
  38. T. Eggen, M. Moeder, A. Arukwe, Municipal landfill leachates: a significant source for new and emerging pollutants, Sci. Total Environ., 408 (2010) 5147–5157.
  39. B.O. Clark, T. Anumol, M. Barlaz, S.A. Snyder, Investigating landfill leachate as a source of trace organic pollutants, Chemosphere, 127 (2015) 269–275.
  40. R.H. Heath, Characterization of the Pharmaceutical Content in Municipal Solid Waste Landfill Leachate and Impacted Groundwater, Maine Department of Environmental Protection. Available at: https://umaine.edu/mitchellcenter/wp-content/uploads/sites/293/2017/04/Richard_Heath_2017MSWC_PPCP_Leachate_GW_.pdf.
  41. P.H. Roberts, K.V. Thomas, The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment, Sci. Total Environ., 356 (2006) 143–153.
  42. H. Nakata, K. Kannan, P. Jones, J. Giesy, Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluoresence detektor, Chemosphere, 58 (2005) 759–766.
  43. D. Gerrity, S. Snyder, Wastewater and Drinking Water Treatment Technologies, B.W. Brooks, D.B. Huggett, Eds., Human Pharmaceuticals in the Environment: Current and Future Perspectives, Emerging Topics in Ecotoxicology 4, Springer-Verlag, New York, 2012, pp. 225–255.
  44. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  45. A.J. Kang, A.K. Brown, C.S. Wong, Q. Yuan, Removal of antibiotic sulfamethoxazole by anoxic/anaerobic/oxic granular and suspended activated sludge processes, Bioresour. Technol., 251 (2018) 151–187.
  46. C.L. Amorim., A.S. Maia, R.B. Mesquita, A.O. Rangel, M.C. van Loosdrecht, M.E. Tiritan, P.M. Castro, Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin, Water res., 50 (2014) 101–113.
  47. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, Ž. Blažeka, E. Heath, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment, Ultrasonics Sonochemistry, 20 (2013) 1104–1112.
  48. C. Gagnon, A. Lejeunesse, Persistence and Fate of Highly Soluble Pharmaceutical Products in Various Types of Municipal Wastewater Treatment Plants, Vol. 109, WIT Transactions on Ecology and the Environment, WIT Press, Southampton, Boston, 2008, pp. 799–807.
  49. A. Kruglova, P. Ahlgren, N. Korhonen, P. Rantanen, A. Mikola, R. Vahala, Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12°C temperature conditions, Sci. Total Environ., 499 (2014) 394–401.
  50. T. Okuda, Y. Kobayashi, R. Nagao, N. Yamashita, H. Tanaka, S. Tanaka, S. Fujii, C. Konishi, I. Houwa, Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan, Water Sci. Technol., 57 (2008) 65–71.
  51. A.L. Batt, S. Kim, D.S. Aga, Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge, Environ. Sci. Technol., 40 (2006) 7367–7373.
  52. C. Quintelas, D. Mesquita, E.C. Ferreira, Removal of Paracetamol by an Activated Sludge Bioreactor, Wastes: Solutions, Treatments and Opportunities 4th International Conference, 25–26 September 2017, Porto, 2017, pp. 78–80. Available at: https://repositorium.sdum.uminho.pt/bitstream/1822/47209/1/document_46991_1.pdf.
  53. R. Karaman, M. Khamis, J. Abbadi, A. Amro, M. Qurie, I. Ayyad, F. Ayyash, O. Hamarsheh, R. Yaqmour, S. Nir, S.A. Bufo, L. Scrano, S. Lerman, S. Gur-Reznik, C.G. Dosoretz, Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle-clay complex, activated charcoal, and reverse osmosis membranes, Environ. Technol., 37 (2016) 2414–2427.
  54. G. Guney, D.T. Sponza, Comparison of biological and advanced treatment processes for ciprofloxacin removal in a raw hospital wastewater, Environ. Technol., 37 (2016) 3151–3167.
  55. A. Göbel, C.S. McArdell, A. Joss, H. Siegrist, W. Giger, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Sci. Total Environ., 372 (2007) 361–71.
  56. G.C. Ghosh, S. Hanamoto, N. Yamashita, X. Huang, H. Tanaka, Antibiotics removal in biological sewage treatment plants, Pollution, 2 (2016) 131–139.
  57. N. Delgado, A. Navarro, D. Marino, G.A. Peñuela, A. Ronco, Removal of pharmaceuticals and personal care products from domestic wastewater using rotating biological contactors, Int. J. Environ. Sci. Technol., (2018) 1–10. doi: https://doi.org/10.1007/ s13762-018-1658-2.
  58. D. Cecconet, D. Molognoni, A. Callegari, A.G. Capodaglio, Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater: a review and future perspectives, J. Environ. Chem. Eng., 5 (2017) 3590–3603.
  59. B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi, G. Buelna, Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach, Bioresour. Technol, 224 (2017) 1–12.
  60. A. Langenhoff, N. Inderfurth, T. Veuskens, G. Schraa, M. Blokland, K. Kujawa-Roeleveld, H. Rijnaarts, Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac from wastewater, Biomed. Res. Int., 2013 (2013) 1–9. doi: http:// dx.doi.org/10.1155/2013/325806.
  61. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Kang, S. Xia, Z. Zhang, W.E. Price, Removal and fate of micropollutants in a sponge-based moving bed bioreactor, Bioresour. Technol., 159 (2014) 311–319.
  62. L. Sbardella, J. Comas, A. Fenu, I. Rodriguez-Roda, M. Weemaes, Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater, Sci. Total Environ., 636 (2018) 519–529.
  63. A.C. Del Álamo, M.I. Pariente, I. Vasiliadou, B. Padrino, D. Puyol, R. Molina, F. Martínez, Removal of pharmaceutical compounds from urban wastewater by an advanced bio-oxidation process based on fungi Trametes Versicolor immobilized in a continuous RBC system, Environ. Sci. Pollut. Res. Int., (2017) 1–9. doi: https://doi.org/10.1007/s11356-017-1053-4.
  64. Y. Jia, S.K. Khanal, H. Zhang, G.H. Chen, H. Lu, Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system, Water Res., 119 (2017) 12–20.
  65. M. Narumiya, N. Nakada, N. Yamashita, H. Tanaka, Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion, J. Hazard. Mater., 260 (2013) 305–312.
  66. H. Zhou, J. Zhou, M. Wang, X. Wang, Q. Zhang, Q. Zhang, Y. Zhan, Removal of typical pharmaceutically active compounds in sewage sludge using mesophilic and thermophilic anaerobic digestion processes, Int. J. Environ. Sci. Technol., 12 (2015) 2169–2178.
  67. H. Zhou, Z. Zhang, M. Wang, T. Hu, Z. Wang, Enhancement with physicochemical and biological treatments in the removal of pharmaceutically active compounds during sewage sludge anaerobic digestion processes, Chem. Eng. J., 316 (2017) 361–369.
  68. H. Zhou, Q. Zhang, Q. Zhang, L. Ma, B. Tu, H. Li, Y. Zhou, Removal of clofibric acid and diclofenac during anaerobic digestion of sewage sludge, Environ. Prot. Eng., 39 (2013) 63–77.
  69. V.G. Samaras, A.S. Stasinakis, N.S. Thomaidis, D. Mamais, T.D. Lekkas, Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge, Bioresour. Technol., 162 (2014) 365–372.
  70. S.J. Wolfson, A.W. Porter, J.K. Campbell, L.Y. Young, Naproxen is transformed via acetogenesis and syntrophic acetate oxidation by a methanogenic wastewater consortium, Microbiol. Ecol., 76 (2018) 362–371.
  71. N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination, 239 (2009) 229–246.
  72. K. Miksch, E. Felis, J. Kalka, A. Sochacki, J. Drzymała, Micropollutants in the Environment – Occurrence, Interaction and Elimination, Annual Set Environmental Protection, Monograph, Koszalin, 2016.
  73. M. Carballa, F. Omil, J.M. Lema, Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment, Water Res., 39 (2005) 4790–4796.
  74. S. Giannakis, F.A. Gamarra Vives, D. Grandjean, A. Magnet, L.F. De Alencastro, C. Pulgarin, Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods, Water Res., 84 (2015) 295–306.
  75. M.J. Ahmed, B.H. Hameed, Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: a review, Ecotoxicol. Environ. Saf., 149 (2018) 257–266.
  76. Teeba M. Darweesh, Muthanna J. Ahmed, Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column, Ecotoxicol. Environ. Saf., 138 (2017) 139–145.
  77. D.P. Grover, J.L. Zhou, P.E. Frickers, J.W. Readman, Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water, J. Hazard. Mater., 185 (2011) 1005–1011.
  78. L. Kovalova, H. Siegrist, U. von Gunten, J. Eugster, M. Hagenbuch, A. Wittmer, R. Moser, C.S. McArdell, Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV, Environ. Sci. Technol., 47 (2013) 7899–7908.
  79. S.A. Snyder, E.C. Wert, H. Lei, P. Westerhoff, Y. Yoon, Removal of EDCs and Pharmaceuticals in Drinking and Reuse Treatment Processes, American Water Works Research Foundation, Denver, 2007.
  80. M. Bodzek, K. Konieczny, Zastosowanie procesów membranowych w uzdatnianiu wody (Application of membrane processes in water treatment), Oficyna Wydawnicza Projprzem-Eko, Bydgoszcz (Poland), 2005, (in Polish).
  81. M. Dudziak, M. Bodzek, A study of selected phytoestrogens retention by reverse osmosis and nanofiltration membranes – the role of fouling and scaling, Chem. Pap. – Chem. Zvesti, 64 (2010) 139–146.
  82. L.D. Nghiem, S. Hawkes, Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size, Sep. Purif. Technol., 57 (2007) 176–184.
  83. C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review, Water Res., 38 (2004) 2795–2809.
  84. S. Suárez, J.M. Lema, F. Omil, Pre-treatment of hospital wastewater by coagulation-flocculation and flotation, Bioresour. Technol., 100 (2009) 2138–2146.
  85. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  86. F.G. Kari, S. Hilger, S. Canonica, Determination of the reaction quantum yield for the photochemical degradation of Fe(III)-EDTA: implications for the environmental fate of EDTA in surface waters, Environ. Sci. Technol., 29 (1995) 1008–1017.
  87. J. Reungoat, M. Macova, B.I. Escher, S. Carswell, J.F. Mueller, J. Keller, Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration, Water Res., 44 (2010) 625–637.
  88. Ch.Ch. Lin, H.Y. Lin, L.J. Hsu, Degradation of ofloxacin using UV/H2O2 process in a large photoreactor, Sep. Purif. Technol., 168 (2016) 57–61.