References
- M. Bodzek, M. Dudziak, K. Luks-Betlej, Application of
membrane techniques to water purification. Removal of
phthalates, Desalination, 162 (2004) 121–128.
- SAICM – ICCM3 Emerging Issues – ISDE Nomination EPPP –
November 2010, Rev. August 2011. Available at: http://www.lakareformiljon.org/attachments/354_SAICM%20ICCM%20Emerging%20Issues%20ISDE%20Proposal%20EPPP%20Version%20Aug%2023%202011
- .pdf.
- Pharmaceuticals in the Environment – The Global Perspective.
Occurrence, Effects, and Potential Cooperative Action Under
SAICM, German Environment Agency, Dessau-Roßlau, 2014.
- Available at: https://pubchem.ncbi.nlm.nih.gov.
- USFW, U.S. Fish and Wildlife Service Research Information
Bulletin, No. 84-78, U.S. Department of the Interior, Washington,
D.C., 1984.
- M. Zelenakova, Ed., Water Management and the Environment:
Case Studies. WINEC 2017, Vol. 86, Water Science and
Technology Library, Springer, Cham, 2018.
- Y. Suzuki, K. Komori, N. Nakada, A. Harada, Status of
Pharmaceuticals and Personal Care Products (PPCPs) in River
Water and Wastewater and Evaluation of Their Effects on
Aquatic Organisms, Public Works Research Institute. Available
at: https://www.niph.go.jp/soshiki/suido/pdf/h21JPUS/abstract/r3-3.pdf.
- C.T.A. Moermond, Environmental Risk Limits for
Pharmaceuticals, Derivation of WFD Water Quality Standards
for Carbamazepine, Metoprolol, Metformin and Amidotrizoic
acid, RIVM Letter Report 270006002/2014. Available at: https://www.rivm.nl/bibliotheek/rapporten/270006002.pdf
- M. Grung, T. Källqvist, K. Thomas, Initial Assessment of Eleven
Pharmaceuticals Using the EMEA Guideline in Norway, Statens
forurensningstilsyn (SFT), Oslo, 2006.
- K. Sosnowska, K. Styszko-Grochowiak, J. Gołaś, Leki w
środowisku – źródła, przemiany, zagrożenia, IV Krakowska
Konferencja Młodych Uczonych, 17–19 września 2009,
Sympozja i Konferencje KKMU nr 4, AGH Kraków, 2009, pp.
395–404 (in Polish).
- U. Memmert, A. Peither, R. Burri, K. Weber, T. Schmidt, P.
Sumpter, A. Hartmann, Diclofenac: new data on chronic toxicity
and bioconcentration in fish, Environ. Toxicol. Chem., 32 (2013)
442–452.
- M. Cleuvers, Aquatic ecotoxicity of pharmaceuticals including
the assessment of combination effects, Toxicol. Lett., 142 (2003)
185–194.
- B. Ferrari, N. Paxéus, R.L. Giudice, A. Pollio, J. Garric,
Ecotoxicological impact of pharmaceuticals found in treated
wastewaters: study of carbamazepine, clofibric acid, and
diclofenac, Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
- R. Triebskorn, H. Casper, A. Heyd, R. Eikemper, H.R. Köhler, J.
Schwaiger, Toxic effects of the non-steroidal anti-inflammatory
drug diclofenac. Part II: cytological effects in liver, kidney, gills
and intestine of rainbow trout (Oncorhynchus mykiss), Aquat.
Toxicol., 68 (2004) 151–166.
- E. Praskova, L. Plhalova, L. Chromcova, S. Stepanova, I.
Bedanova, I. Blahova, M. Hostovsky, M. Skoric, P. Maršálek,
E. Voslarova, Z. Svobodova, Effects of subchronic exposure of
diclofenac on growth, histopathological changes, and oxidative
stress in Zebrafish (Danio rerio), Sci. World J., 2014 (2014) 1–5.
- K. Kümmerer, Ed., Pharmaceuticals in the Environment:
Sources, Fate, Effects and Risk, Springer-Verlag, Berlin, 2008.
- Z.H. Li, T. Randak, Residual pharmaceutically active
compounds (PhACs) in aquatic environment – status, toxicity
and kinetics: a revive, Veterinární Medicína, 52 (2009) 295–314.
- M. Cleuvers, Aquatische Ökotoxikologie ausgewählter
Arzneimittel. Algentest und akuter Daphnientest, UWSF – Z.
Umweltchem Ökotox, 14 (2002) 85–89.
- M. Cleuvers, Mixture toxicity of the anti-inflammatory drugs
diclofenac, ibuprofen, naproxen and acetylsalicylic acid,
Ecotoxicol. Environ. Saf., 59 (2004) 309–315.
- IUCLID Dataset Substance 15687-27-1, Ibuprofen, ECB, 2000.
Available at: http://ecb.jrc.it/IUCLID-Data-Sheet/15687271.pdf.
- R. Nesbitt, Effects of Chronic Exposure to Ibuprofen and
Naproxen on Florida Flagfish (Jordanella floridae) over One
Complete Life-Cycle, The Faculty of Science University of
Ontario Institute of Technology, Ontario, 2011. Available at:
https://ir.library.dc-uoit.ca/bitstream/10155/176/1/Nesbitt_Richard.pdf.
- Available at: https://www.astrazeneca.com/content/dam/az/our-company/Sustainability/2017/Naproxen.pdf.
- VSDB: Veterinary Substances DataBase. Available at:
https://sitem.herts.ac.uk/aeru/vsdb/.
- M. De Liguoro, V. Di Leva, M. Dalla Bona, R. Merlanti, G.
Caporale, G. Radaelli, Sublethal effects of trimethoprim on
four freshwater organisms, Ecotoxicol. Environ. Saf., 82 (2012)
114–121.
- P. Kim, Y. Park, K. Ji, J. Seo, S. Lee, K. Choi, Y. Kho, J. Park,
K. Choi, Effect of chronic exposure to acetaminophen and
lincomycin on Japanese medaka (Oryzias latipes) and freshwater
cladocerans Daphnia magna and Moina macrocopa, and potential
mechanisms of endocrine disruption, Chemosphere, 89 (2012)
10–18.
- Available at: www.msds-gsk.com/GetSdsFile.ashx?fileId=3998.
- Available at: http://www.wikipharma.org/api_data.asp.
- B. Ferrari, R. Mons, B. Vollat, B. Fraysse, N. Paxe´us, R. Lo
Giudice, A. Pollio, J. Garric, Environmental risk assessment
of six human pharmaceuticals: are the current environmental
risk assessment procedures sufficient for the protection of
the aquatic environment?, Environ. Toxicol. Chem., 23 (2004)
1344–1354.
- N.J. Ayscough, J. Fawell, G. Franklin, W. Young, Review of
Human Pharmaceuticals in the Environment, Research and
Development Technical Report P390, Environment Agency,
Bristol, 2000.
- T. Heberer, Tracking persistent pharmaceutical residues from
municipal sewage to drinking water, J. Hydrol., 266 (2002)
175–189.
- R. Andreozzi, R. Marotta, N. Paxéus, Pharmaceuticals in
STP effluents and their solar photodegradation in aquatic
environment, Chemosphere, 50 (2003) 1319–1330.
- K.V. Thomas, K. Langford, M. Grung, M. Schlabach, C.
Dye, Occurrence of Selected Pharmaceutical in Wastewater
Effluents from Hospitals (Ullevål and Rikshospitalet)
and VEAS Wastewater Treatment Works, TA-2246/2007.
Available at: https://brage.bibsys.no/xmlui/bitstream/handle/11250/213547/5376-2007_72dpi.pdf.
- K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human
pharmaceuticals, Aquat. Toxicol., 76 (2006) 122–159.
- C. Schneider, B. Kuch, M. Braun, J.W. Metzger, Pharmaceuticals
in Landfill Leachates and Receiving WWTP Influents, ISWA,
University of Stuttgart, Germany. Available at: http://www.iswa.uni-stuttgart.de/ch/publikationen/download_Poster_ch/setac04_pharmaceuticals_in_landfill_leachates.pdf.
- J. Bernier, Ed., Effectiveness of Conventional and Advanced In
Situ Leachate Treatment, Report prepared for Environment, QC
Canada, Québec, 2014.
- E. Garcia-Lor, J.V. Sancho, R. Serrano, F. Hernandez, Occurrence
and removal of pharmaceutical in wastewater treatment plants
at the Spanish Mediterranean area of Valencia, Chemosphere,
87 (2012) 453–462.
- T. Eggen, M. Moeder, A. Arukwe, Municipal landfill leachates:
a significant source for new and emerging pollutants, Sci. Total
Environ., 408 (2010) 5147–5157.
- B.O. Clark, T. Anumol, M. Barlaz, S.A. Snyder, Investigating
landfill leachate as a source of trace organic pollutants,
Chemosphere, 127 (2015) 269–275.
- R.H. Heath, Characterization of the Pharmaceutical Content
in Municipal Solid Waste Landfill Leachate and Impacted
Groundwater, Maine Department of Environmental Protection.
Available at: https://umaine.edu/mitchellcenter/wp-content/uploads/sites/293/2017/04/Richard_Heath_2017MSWC_PPCP_Leachate_GW_.pdf.
- P.H. Roberts, K.V. Thomas, The occurrence of selected
pharmaceuticals in wastewater effluent and surface waters
of the lower Tyne catchment, Sci. Total Environ., 356 (2006)
143–153.
- H. Nakata, K. Kannan, P. Jones, J. Giesy, Determination of
fluoroquinolone antibiotics in wastewater effluents by liquid
chromatography-mass spectrometry and fluoresence detektor,
Chemosphere, 58 (2005) 759–766.
- D. Gerrity, S. Snyder, Wastewater and Drinking Water
Treatment Technologies, B.W. Brooks, D.B. Huggett, Eds.,
Human Pharmaceuticals in the Environment: Current and
Future Perspectives, Emerging Topics in Ecotoxicology 4,
Springer-Verlag, New York, 2012, pp. 225–255.
- B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on
emerging contaminants in wastewaters and the environment:
current knowledge, understudied areas and recommendations
for future monitoring, Water Res., 72 (2015) 3–27.
- A.J. Kang, A.K. Brown, C.S. Wong, Q. Yuan, Removal of
antibiotic sulfamethoxazole by anoxic/anaerobic/oxic granular
and suspended activated sludge processes, Bioresour. Technol.,
251 (2018) 151–187.
- C.L. Amorim., A.S. Maia, R.B. Mesquita, A.O. Rangel, M.C. van
Loosdrecht, M.E. Tiritan, P.M. Castro, Performance of aerobic
granular sludge in a sequencing batch bioreactor exposed to
ofloxacin, norfloxacin and ciprofloxacin, Water res., 50 (2014)
101–113.
- M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B.
Širok, Ž. Blažeka, E. Heath, Removal of pharmaceuticals from
wastewater by biological processes, hydrodynamic cavitation
and UV treatment, Ultrasonics Sonochemistry, 20 (2013)
1104–1112.
- C. Gagnon, A. Lejeunesse, Persistence and Fate of Highly
Soluble Pharmaceutical Products in Various Types of Municipal
Wastewater Treatment Plants, Vol. 109, WIT Transactions
on Ecology and the Environment, WIT Press, Southampton,
Boston, 2008, pp. 799–807.
- A. Kruglova, P. Ahlgren, N. Korhonen, P. Rantanen, A.
Mikola, R. Vahala, Biodegradation of ibuprofen, diclofenac
and carbamazepine in nitrifying activated sludge under 12°C
temperature conditions, Sci. Total Environ., 499 (2014) 394–401.
- T. Okuda, Y. Kobayashi, R. Nagao, N. Yamashita, H. Tanaka, S.
Tanaka, S. Fujii, C. Konishi, I. Houwa, Removal efficiency of 66
pharmaceuticals during wastewater treatment process in Japan,
Water Sci. Technol., 57 (2008) 65–71.
- A.L. Batt, S. Kim, D.S. Aga, Enhanced biodegradation of
iopromide and trimethoprim in nitrifying activated sludge,
Environ. Sci. Technol., 40 (2006) 7367–7373.
- C. Quintelas, D. Mesquita, E.C. Ferreira, Removal of Paracetamol
by an Activated Sludge Bioreactor, Wastes: Solutions,
Treatments and Opportunities 4th International Conference,
25–26 September 2017, Porto, 2017, pp. 78–80. Available at:
https://repositorium.sdum.uminho.pt/bitstream/1822/47209/1/document_46991_1.pdf.
- R. Karaman, M. Khamis, J. Abbadi, A. Amro, M. Qurie, I. Ayyad,
F. Ayyash, O. Hamarsheh, R. Yaqmour, S. Nir, S.A. Bufo, L.
Scrano, S. Lerman, S. Gur-Reznik, C.G. Dosoretz, Paracetamol
biodegradation by activated sludge and photocatalysis and
its removal by a micelle-clay complex, activated charcoal,
and reverse osmosis membranes, Environ. Technol., 37 (2016)
2414–2427.
- G. Guney, D.T. Sponza, Comparison of biological and advanced
treatment processes for ciprofloxacin removal in a raw hospital
wastewater, Environ. Technol., 37 (2016) 3151–3167.
- A. Göbel, C.S. McArdell, A. Joss, H. Siegrist, W. Giger, Fate
of sulfonamides, macrolides, and trimethoprim in different
wastewater treatment technologies, Sci. Total Environ., 372
(2007) 361–71.
- G.C. Ghosh, S. Hanamoto, N. Yamashita, X. Huang, H. Tanaka,
Antibiotics removal in biological sewage treatment plants,
Pollution, 2 (2016) 131–139.
- N. Delgado, A. Navarro, D. Marino, G.A. Peñuela, A. Ronco,
Removal of pharmaceuticals and personal care products from
domestic wastewater using rotating biological contactors, Int. J.
Environ. Sci. Technol., (2018) 1–10. doi: https://doi.org/10.1007/
s13762-018-1658-2.
- D. Cecconet, D. Molognoni, A. Callegari, A.G. Capodaglio,
Biological combination processes for efficient removal of
pharmaceutically active compounds from wastewater: a review
and future perspectives, J. Environ. Chem. Eng., 5 (2017)
3590–3603.
- B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi,
G. Buelna, Review on fate and mechanism of removal of
pharmaceutical pollutants from wastewater using biological
approach, Bioresour. Technol, 224 (2017) 1–12.
- A. Langenhoff, N. Inderfurth, T. Veuskens, G. Schraa, M.
Blokland, K. Kujawa-Roeleveld, H. Rijnaarts, Microbial removal
of the pharmaceutical compounds ibuprofen and diclofenac
from wastewater, Biomed. Res. Int., 2013 (2013) 1–9. doi: http://
dx.doi.org/10.1155/2013/325806.
- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Kang, S. Xia,
Z. Zhang, W.E. Price, Removal and fate of micropollutants in a
sponge-based moving bed bioreactor, Bioresour. Technol., 159
(2014) 311–319.
- L. Sbardella, J. Comas, A. Fenu, I. Rodriguez-Roda, M. Weemaes,
Advanced biological activated carbon filter for removing
pharmaceutically active compounds from treated wastewater,
Sci. Total Environ., 636 (2018) 519–529.
- A.C. Del Álamo, M.I. Pariente, I. Vasiliadou, B. Padrino, D. Puyol,
R. Molina, F. Martínez, Removal of pharmaceutical compounds
from urban wastewater by an advanced bio-oxidation
process based on fungi Trametes Versicolor immobilized in a
continuous RBC system, Environ. Sci. Pollut. Res. Int., (2017)
1–9. doi: https://doi.org/10.1007/s11356-017-1053-4.
- Y. Jia, S.K. Khanal, H. Zhang, G.H. Chen, H. Lu, Sulfamethoxazole
degradation in anaerobic sulfate-reducing bacteria sludge
system, Water Res., 119 (2017) 12–20.
- M. Narumiya, N. Nakada, N. Yamashita, H. Tanaka, Phase
distribution and removal of pharmaceuticals and personal care
products during anaerobic sludge digestion, J. Hazard. Mater.,
260 (2013) 305–312.
- H. Zhou, J. Zhou, M. Wang, X. Wang, Q. Zhang, Q. Zhang, Y.
Zhan, Removal of typical pharmaceutically active compounds
in sewage sludge using mesophilic and thermophilic anaerobic
digestion processes, Int. J. Environ. Sci. Technol., 12 (2015)
2169–2178.
- H. Zhou, Z. Zhang, M. Wang, T. Hu, Z. Wang, Enhancement
with physicochemical and biological treatments in the removal
of pharmaceutically active compounds during sewage sludge
anaerobic digestion processes, Chem. Eng. J., 316 (2017)
361–369.
- H. Zhou, Q. Zhang, Q. Zhang, L. Ma, B. Tu, H. Li, Y. Zhou,
Removal of clofibric acid and diclofenac during anaerobic
digestion of sewage sludge, Environ. Prot. Eng., 39 (2013) 63–77.
- V.G. Samaras, A.S. Stasinakis, N.S. Thomaidis, D. Mamais,
T.D. Lekkas, Fate of selected emerging micropollutants during
mesophilic, thermophilic and temperature co-phased anaerobic
digestion of sewage sludge, Bioresour. Technol., 162 (2014)
365–372.
- S.J. Wolfson, A.W. Porter, J.K. Campbell, L.Y. Young, Naproxen is
transformed via acetogenesis and syntrophic acetate oxidation
by a methanogenic wastewater consortium, Microbiol. Ecol., 76
(2018) 362–371.
- N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the
effects of emerging contaminants in wastewater and options for
their removal, Desalination, 239 (2009) 229–246.
- K. Miksch, E. Felis, J. Kalka, A. Sochacki, J. Drzymała,
Micropollutants in the Environment – Occurrence, Interaction
and Elimination, Annual Set Environmental Protection,
Monograph, Koszalin, 2016.
- M. Carballa, F. Omil, J.M. Lema, Removal of cosmetic
ingredients and pharmaceuticals in sewage primary treatment,
Water Res., 39 (2005) 4790–4796.
- S. Giannakis, F.A. Gamarra Vives, D. Grandjean, A. Magnet,
L.F. De Alencastro, C. Pulgarin, Effect of advanced oxidation
processes on the micropollutants and the effluent organic
matter contained in municipal wastewater previously treated
by three different secondary methods, Water Res., 84 (2015)
295–306.
- M.J. Ahmed, B.H. Hameed, Removal of emerging
pharmaceutical contaminants by adsorption in a fixed-bed
column: a review, Ecotoxicol. Environ. Saf., 149 (2018) 257–266.
- Teeba M. Darweesh, Muthanna J. Ahmed, Adsorption of
ciprofloxacin and norfloxacin from aqueous solution onto
granular activated carbon in fixed bed column, Ecotoxicol.
Environ. Saf., 138 (2017) 139–145.
- D.P. Grover, J.L. Zhou, P.E. Frickers, J.W. Readman, Improved
removal of estrogenic and pharmaceutical compounds in
sewage effluent by full scale granular activated carbon: impact
on receiving river water, J. Hazard. Mater., 185 (2011) 1005–1011.
- L. Kovalova, H. Siegrist, U. von Gunten, J. Eugster, M.
Hagenbuch, A. Wittmer, R. Moser, C.S. McArdell, Elimination of
micropollutants during post-treatment of hospital wastewater
with powdered activated carbon, ozone, and UV, Environ. Sci.
Technol., 47 (2013) 7899–7908.
- S.A. Snyder, E.C. Wert, H. Lei, P. Westerhoff, Y. Yoon, Removal
of EDCs and Pharmaceuticals in Drinking and Reuse Treatment
Processes, American Water Works Research Foundation,
Denver, 2007.
- M. Bodzek, K. Konieczny, Zastosowanie procesów
membranowych w uzdatnianiu wody (Application of
membrane processes in water treatment), Oficyna Wydawnicza
Projprzem-Eko, Bydgoszcz (Poland), 2005, (in Polish).
- M. Dudziak, M. Bodzek, A study of selected phytoestrogens
retention by reverse osmosis and nanofiltration membranes –
the role of fouling and scaling, Chem. Pap. – Chem. Zvesti, 64
(2010) 139–146.
- L.D. Nghiem, S. Hawkes, Effects of membrane fouling on the
nanofiltration of pharmaceutically active compounds (PhACs):
mechanisms and role of membrane pore size, Sep. Purif.
Technol., 57 (2007) 176–184.
- C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the
rejection of organic solutes during NF/RO treatment – a
literature review, Water Res., 38 (2004) 2795–2809.
- S. Suárez, J.M. Lema, F. Omil, Pre-treatment of hospital
wastewater by coagulation-flocculation and flotation, Bioresour.
Technol., 100 (2009) 2138–2146.
- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S.
Liang, X.C. Wang, A review on the occurrence of micropollutants
in the aquatic environment and their fate and removal during
wastewater treatment, Sci. Total Environ., 473–474 (2014)
619–641.
- F.G. Kari, S. Hilger, S. Canonica, Determination of the reaction
quantum yield for the photochemical degradation of Fe(III)-EDTA: implications for the environmental fate of EDTA in
surface waters, Environ. Sci. Technol., 29 (1995) 1008–1017.
- J. Reungoat, M. Macova, B.I. Escher, S. Carswell, J.F. Mueller, J.
Keller, Removal of micropollutants and reduction of biological
activity in a full scale reclamation plant using ozonation and
activated carbon filtration, Water Res., 44 (2010) 625–637.
- Ch.Ch. Lin, H.Y. Lin, L.J. Hsu, Degradation of ofloxacin using
UV/H2O2 process in a large photoreactor, Sep. Purif. Technol.,
168 (2016) 57–61.