References

  1. D. Baruaand, W.B. Greenough III, Cholera, Springer Science Business Media, LLC, New York, 1992.
  2. N.J. Ashbolt, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology, 198 (2004) 229–238.
  3. American Water Works Association, Water Chlorination/ Chloramination Practices and Principles, Manual of Water Supply Practices – M20, 2nd ed., American Water Works Association, Denver, CO, 2006, pp. 1–8.
  4. Available at: https://ecdc.europa.eu/en/climate-change/climate-change-europe/water-borne-diseases.
  5. J.C. Crittenden, R.R. Trussel, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment, Principles and Design, 3rd ed., New Jersey, 2012, pp. 903–1032.
  6. C. Bartels, J. Beaute, G. Fraser, B. de Jong, J.M. Urtaza, G. Nichols, T. Niskanen, D. Palm, E. Robesyn, E. Severi, L. Tavoschi, C.V. Santos, I. Van Walle, E. Warns-Petit, T. Westrelland, R. Whittaker, Annual Epidemiological Report – Food and Waterborne Diseases and Zoonoses, ECDC Surveillance Report, European Centre for Disease Prevention and Control, Stockholm, November 2014, pp. 6–93.
  7. Report on the State of Communicable Diseases in the EU and EEA/EFTA Countries, Annual Epidemiological Report on Communicable Diseases in Europe, European Centre for Disease Prevention and Control, 2008, pp. 103–199.
  8. M. Brandt, Twort’s Water Supply, 7th ed., Elsevier Ltd, 2017, pp. 475–511.
  9. Ch. Binnie, M. Kimber, Basic Water Treatment, 5th ed., ICE Publishing, London, 2013, pp. 197–213.
  10. R.M. Clark, M. Sivaganesan, Predicting chlorine residuals in drinking water: second order model, J. Water Resour. Plann. Manage., 128 (2002) 152–161.
  11. C.M.M. Bougeard, E.H. Goslan, B. Jefferson, S.A. Parsons, Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine, Water Res., 44 (2010) 729–740.
  12. S.D. Richardson, Disinfection by-products and other emerging contaminants in drinking water, TrAC, Trends Anal. Chem., 22 (2003) 666–684.
  13. N. Shammas, Water Engineering – Hydraulics, Distribution and Treatment, 1st ed., John Wiley & Sons, New Jersey, 2016, pp. 545–592.
  14. G.S. Wang, Y.C. Deng, T.F. Lin, Cancer risk assessment from trihalomethanes in drinking water, Sci. Total Environ., 387 (2007) 86–95.
  15. P. Pentamwa, B. Sukton, T. Wongklom, S. Pentamwa, Cancer risk assessment from trihalomethanes in community water supply at Northeastern Thailand, Int. J. Environ. Sci. Technol. Dev., 4 (2013) 538–544.
  16. I. Zimoch, Computer simulation as a tool assisting in the operation of a water supply system, Environ. Prot. (Ochr. Srodowiska), 30 (2008) 31–35 (in Polish).
  17. I. Zimoch, Modeling of trihalomethane concentrations in tap water, Environ. Prot. (Ochr. Srodowiska), 33 (2011) 35–42 (in Polish).
  18. I. Zimoch, E. Łobos, Application of the Theil statistics to the calibration of a dynamic water supply model, Environ. Prot. Eng, 36 (2010) 105–115.
  19. M.J. Rodriguez, J.-B. Serodes, Assessing empirical linear and non-linear modeling of residual chlorine in urban drinking water systems, Environ. Modell. Software, 14 (1999) 93–102.
  20. I. Fisher, G. Kastl, A. Sathasivan, Evaluation of suitable chlorine bulk-decay models for water distribution systems, Water Res., 45 (2011) 4896–4908.
  21. J.J. Vasconcelos, L.A. Rossman, W.M. Grayman, P.F. Boulos, R.M. Clark, Kinetics of chlorine decay, J. Am. Water Works Assn., 99 (1997) 54–65.
  22. L. Monteiro, D. Figueiredo, S. Dias, R. Freitas, D. Covas, J. Menaia, S.T. Coelho, Modeling of chlorine decay in drinking water supply systems using EPANET MSX, Procedia Eng., 70 (2014) 1192–1200.
  23. P. Castro, M. Neves, Chlorine decay in water distribution systems case study – Lousada network, Electron. J. Environ. Agric. Food Chem., 2 (2003) 261–266.
  24. S.H. Maier, R.S. Powell, C.A. Woodward, Calibration and comparison of chlorine decay models for a test water distribution system, Water Res., 34 (2000) 2301–2309.
  25. I. Stoianov, A. Aisopou, Chlorine decay under steady and unsteady-state hydraulic conditions, Procedia Eng., 70 (2014) 1592–1601.
  26. T.A. Ammar, K.Y. Abid, A.A. El-Bindary, A.Z. El-Sonbati, Chlorine dioxide bulk decay prediction in desalinated drinking water, Desalination, 352 (2014) 45–51.
  27. A.J. Kohpaei, A. Sathasivan, Chlorine decay prediction in bulk water using the parallel second order model: an analytical solution development, Chem. Eng. J., 171 (2011) 232–241.
  28. N.B. Hallam, J.R. West, C.F. Forster, J.C. Powell, I. Spencer, The decay of chlorine associated with the pipe wall in water distribution systems, Water Res., 36 (2002) 3479–3488.
  29. A.O. Al-Jasser, Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect, Water Res., 41 (2007) 387–396.
  30. I. Zimoch, E. Łobos, The optimization of chlorine dose in water treatment process in order to reduce the formation of disinfection by-products, Desal. Wat. Treat., 52 (2014) 3719–3724.
  31. A. Musz, B. Kowalska, M.K. Widomski, Some issues concerning the problems of water quality modeling in distribution systems, Ecol. Chem. Eng. S, 16 (2009) 175–184.
  32. L.A. Rossman, Epanet 2, User’s Manual, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, 2000, pp. 41–46.
  33. American Water Works Association, Computer Modeling of Water Distribution Systems, Manual of Water Supply Practices – M32, 3rd ed., Denver, 2012, pp. 147–172.