References
- J.F. Blais, S. Dufresne, G. Mercier, State of the art of technologies
for metal removal from industrial effluents, J. Water Sci., 12
(1999) 687–711.
- B. Sancey, G. Trunfio, J. Charles, J.F. Minary, S. Gavoille, P.M.
Badot, G. Crini, Heavy metal removal from industrial effluents
by sorption on cross-linked starch, J. Environ. Manage., 292
(2011) 765–772.
- G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various
pollutants from aqueous solutions on to activated carbon, Water
Res., 19 (1985) 491–495.
- A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and
municipal waste materials as potential adsorbents for water
treatment - a review, Chem. Eng. J., 157 (2010) 277–296.
- E. Lorenc-Grabowska, G. Gryglewicz, Adsorption of lignitederived
humic acids on coal-based mesoporous activated
carbons, J. Colloid Interface Sci., 284 (2005) 416–423.
- C. Selomulya, V. Meeyoo, R. Amal, Mechanisms of Cr(VI)
removal from water by various types of activated carbons, J.
Chem. Technol. Biotechnol., 74 (1999) 111–122.
- J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo, Waste materials for activated carbon
preparation and its use in aqueous phase treatment: a review, J.
Environ. Manage., 85 (2007) 833–846.
- L. Monser, N. Adhoum, Modified activated carbon for
the removal of copper, zinc, chromium, and cyanide from
wastewater, Sep. Purif. Technol., 26 (2002) 137–146.
- S.P. Dubey, K. Gopal, Adsorption of chromium(VI) on low
cost adsorbents derived from agricultural waste material: a
comparative study, J. Hazard. Mater., 145 (2007) 465–470.
- E.A. Ghabbour, G. Davies, Humic Substances: Molecular
Details and Applications in Land and Water Conservation,
Taylor & Francis, Inc., New York, 2005.
- F.J. Stevenson, Humus Chemistry: Genesis, Composition,
Reactions, 2nd ed., Wiley, New York, 1994.
- E. Tipping, Cation Binding by Humic Substances, Cambridge
University Press, Cambridge, 2002.
- A.G. Proidakov, Humic acids from mechanically treated coals: a
review, Solid Fuel Chem., 43 (2009) 9–14.
- V. Romaris-Hortas, A. Moreda-Pineiro, P. Bermejo-Barrera,
Application of microwave energy to speed up the alkaline
extraction of humic and fulvic acids from marine sediments,
Anal. Chim. Acta, 602 (2007) 202–210.
- T. Andjelkovic, J. Perovic, M. Purenovic, S. Blagojevic, R.
Nikolic, D. Andjelkovic, A. Bojic, Acidity of humic acid related
to its oxygen-containing functional groups, Maced. J. Chem.
Chem. Eng., 25 (2006) 131–137.
- M. Fukushima, S. Tanaka, H. Nakamura, S. Ito, Acid-base
characterization of molecular weight fractionated humic acid,
Talanta, 43 (1996) 383–390.
- J.C. Masini, G. Abate, E.C. Lima, L.C. Hahn, M.S. Nakamura,
J. Lichtig, H.R. Nagatomy, Comparison of methodologies for
determination of carboxylic and phenolic groups in humic
acids, Anal. Chim. Acta, 364 (1998) 223–233.
- M. Fuentes, R. Baigorri, G. González-Gaitano, J.M. García-Mina,
New methodology to assess the quantity and quality of humic
substances in organic materials and commercial products for
agriculture, J. Soil Sediments 18 (2018) 1389–1399.
- L.P. Canellas, F.L. Olivares, N.O. Aguiar, D.L. Jones, A.
Nebbioso, P. Mazzei, A. Piccolo, Humic and fulvic acids as
biostimulants in horticulture, Sci. Hortic., 196 (2015) 15–27.
- M. Widera, An overview of lithotype associations of Miocene
lignite seams exploited in Poland, Geologos, 422 (2016) 213–225.
- A. Pietraszewski, Polish lignite mining industry, Brown Coal, 79
(2012) 54–59 (in Polish).
- L. Doskočil, J. Burdíková-Szewieczková, V. Enev, L. Kalina,
J. Wasserbauer, Spectral characterization and comparison of
humic acids isolated from some European lignites, Fuel, 213
(2018) 123–132.
- A. Giannouli, S. Kalaitzidis, G. Siavalas, A. Chatziapostolou,
K. Christanis, S. Papazisimou, C. Papanicolaou, A. Foscolos,
Evaluation of Greek low-rank coals as potential raw material
for the production of soil amendments and organic fertilizers,
Int. J. Coal Geol., 77 (2009) 383–393.
- M. Piwocki, Extent and correlations of main groups of the
Tertiary lignite seams on Polish platform area, Geol. Rev., 40
(1992) 281–286 (in Polish).
- M. Widera, Changes of the lignite seam architecture — a case
study from Polish lignite deposits, Int. J. Coal Geol., 114 (2013)
60–73.
- S.A. Semenova, Y.F. Patrakov, M.V. Batina, Ozonization of
humic acids in brown coal oxidized in situ, Solid Fuel Chem.,
42 (2008) 268–273.
- M. Skybova, L. Turcaniova, S. Cuvanova, A. Zubrik, S. Hredzak,
L. Hudymacova, Mechanochemical activation of humic acids in
the brown coal, J. Alloys Comp., 434 (2007) 842–845.
- A. Jezierski, F. Czechowski, M. Jerzykiewicz, J. Drozd, EPR
investigations of structure of humic acids from compost, soil,
peat and soft brown coal upon oxidation and metal uptake,
Appl. Magn. Reson., 18 (2000) 127–128.
- H. Martyniuk, J. Więckowska, Adsorption of metal ions on
humic acids extracted from brown coals, Fuel Process. Technol.,
84 (2003) 23–36.
- E.G. Abramov, A.A. Bezzubov, Electrosorptive separation of
humic substances, J Water Chem. Technol., 29 (2007) 125–130.
- H.G. Sanjay, A.K. Fataftah, D.S. Walia, K.C. Srivastava, K.C.,
In: E.A. Ghabbour, G. Davies, Eds., Understanding Humic
Substances: Advanced Methods, Properties and Applications,
The Royal Society of Chemistry, Cambridge, 1999, pp. 241–255.
- H.G. Sanjay, K.C. Srivastave, D.S. Walia, Development of
HUMASORB™, a Lignite Derived Humic Acid for Removal
of Metals and Organic Contaminants from Groundwater,
Proceedings of the Environmental Technology Through
Industry Partnership Conference, Vol. 2, 1995, pp. 411–424.
- M. Huculak-Mączka, J. Hoffmann, K. Hoffmann, Evaluation of
the possibilities of using humic acids obtained from lignite in
the production of commercial fertilizers, J. Soils Sediments, 18
(2018) 2868–2880.
- J. Macuda, A. Nodzeński, M. Wagner, L. Zawisza, Sorption of
methane on lignite from Polish deposits, Int. J. Coal Geol., 87
(2011) 41–48.
- R.T. Lamar, K.H. Talbot, Critical Comparison of Humic Acid
Test Methods, Comm. Soil Sci. Plant Anal., 40 (2009) 2309–2322.
- G. Arslan, S. Edebali, E. Pehlivan, Physical and chemical factors
affecting the adsorption of Cr(VI) via humic acids extracted
from brown coals, Desalination, 255 (2010) 117–123.
- A.K. Pandey, S.D. Pandey, V. Misra, Stability constants of
metal - humic acid complexes and its role in environmental
detoxification, Ecotoxicol. Environ. Saf., 47 (2000) 195.
- M. Klavins, L. Ansone, J. Tjutrins, I. Silamikele, O. Purmalis.
Differential thermal analysis of peat and peat humic acids in
relation to their origin, In: M. Klavins, Ed., Mires and Peat,
University of Latvia Press, Riga, 2010, pp. 207–214.
- A. Iordanidisa, A. Georgakopoulosa, K. Markovab, A.
Filippidisa, A. Kassoli-Fournaraki, Application of TG-DTA to
the study of Amyntean lignites, northern Greece, Thermochim.
Acta, 371 (2001) 137–141.
- O. Francioso, D. Montecchio, P. Gioacchini, C. Ciavatta, Thermal
analysis (TG-DTA) and isotopic characterization (13C-15N) of
humic acids from different origins, Appl. Geochem., 20 (2005)
537–544.
- M.T. Dell’Abate, A. Benedetti, A. Trinchera, C. Dazzi, Humic
substances along the profile of two Typic Haploxerert,
Geoderma, 107 (2002) 281–296.
- C. Namasivayam, S. Senthilkumar, Adsorption of copper(II)
by “waste” Fe(III)/Cr(III) hydroxide from aqueous solution
and radiator manufacturing industry wastewater, Sep. Sci.
Technol., 34 (1999) 201–217.
- E. Pehlivan, G. Arslan, Removal of metal ions using lignite in
aqueous solution - Low cost biosorbents, Fuel Process. Technol.,
88 (2007) 99–106.