References

  1. National Research Council, A report of the national research council: Urban stormwater management in the United States, The National Academies Press, Washington D.C., 2008.
  2. National Research Council, Urban Stormwater Management in the United States, The National Academies Press, Washington D.C., 2009.
  3. US EPA, Storm Water Technology Fact Sheet - wet detention ponds. Fact sheet, 1999.
  4. Prince George’s County, Stormwater Management Design Manual, 2014.
  5. C. Hsieh, A.P. Davis, B.A. Needelman, Bioretention column studies of phosphorus removal from urban stormwater runoff, Water Environ. Res., 790 (2007) 177–184.
  6. P. Hamel, T.D. Fletcher, The impact of stormwater source-control strategies on the (low) flow regime of urban catchments, Wat. Sci. Technol., 690 (2014) 739–745.
  7. C. Yu, J. Duan, Simulation of surface runoff using hydrodynamic model, J. Hydrol. Eng., 6 (2017) 1–12.
  8. A. Roy-Poirier, Y. Filion, P. Champagne, An event-based hydrologic simulation model for bioretention systems, Water Sci. Technol., 720 (2015) 1524–1533.
  9. R.A. Brown, R.W. Skaggs, W.F. Hunt, Calibration and validation of DRAINMOD to model bioretention hydrology, J. Hydrology, 486 (2013) 430–442.
  10. J. Yazdi, S.A.A. Salehi Neyshabouri, Environmental modelling and software identifying low impact development strategies for flood mitigation using a fuzzy-probabilistic approach, Environ. Model. Software, 60 (2014) 31–44.
  11. A.B. Barton, J.R. Argue, Integrated urban water management for residential areas: A reuse model, Wat. Sci. Technol., 600 (2009) 813–823.
  12. L. Ahiablame, R. Shakya, Modeling flood reduction effects of low impact development at a watershed scale, J. Environ. Manage., 171 (2016) 81–91.
  13. J. Gwang, A. Selvakumar, K. Alvi, J. Riverson, J.X. Zhen, L. Shoemaker, F. Lai, Environmental modelling and software a watershed-scale design optimization model for stormwater best management practices, Environ. Model. Software, 60 (2012) 6–18.
  14. J. Gao, R. Wang, J. Huang, M. Liu, Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area, Ecol. Model., 318 (2015) 177–183.
  15. R.A. Brown, R.W. Skaggs, W.F. Hunt III, Calibration and validation of DRAINMOD to model bioretention hydrology, J. Hydrology, 486 (2013) 430–442.
  16. A. Palla, I. Gnecco, Hydrologic modeling of low impact development systems at the urban catchment scale, J. Hydrology, 528 (2015) 361–368.
  17. P. Xu, F. Gao, J. He, X. Ren, W. Xi, Modelling and optimization of land use/land cover change in a developing urban catchment, Wat. Sci. Technol., 75 (2017) 2527–2537.
  18. A.A. Bloorchian, L. Ahiablame, A. Osouli, J. Zhou, Modeling BMP and vegetative cover performance for highway stormwater runoff reduction, Procedia Eng., 145 (2016) 274–280.
  19. I.M. Brodie, Prediction of stormwater particle loads from impervious urban surfaces based on a rainfall detachment index, Wat. Sci. Technol., 51 (1999) 49–56.
  20. J. Zimmermann, C. Dierkes, P. Göbel, C. Klinger, H. Stubbe, W.G. Coldewey, Metal concentrations in soil and seepage water due to infiltration of roof runoff by long term numerical modelling, Wat. Sci. Technol., 51 (2005) 11–19.
  21. I.M. Brodie, SSUIS - A research model for predicting suspended solids loads in stormwater runoff from urban impervious surfaces, Wat. Sci. Technol., 65 (2012) 2140–2147.
  22. J.M. Hathaway, R.A. Brown, J.S. Fu, W.F. Hunt, Bioretention function under climate change scenarios in North Carolina, J. Hydrology, 519 (2014) 503–511.
  23. V. Stovin, S. Poë, C. Berretta. A modelling study of long term green roof retention performance, J. Environ. Manage., 131 (2013) 206–215.
  24. Y. Li, R.W. Babcock, Green roof hydrologic performance and modeling: A review, Wat. Sci. Technol., 69 (2014) 727–738.
  25. T. Afrin, A.A. Khan, N.B. Kaye, F.Y. Testik, Numerical model for the hydraulic performance of perforated pipe underdrains surrounded by loose aggregate numerical model for the hydraulic performance of perforated pipe underdrains surrounded by loose aggregate, J. Hydraul. Eng., 145 (2016) 1–10.
  26. C. Hsieh, A.P. Davis, Evaluation and optimization of bioretention media for treatment of urban storm water runoff, J. Environ. Eng., 131 (2005) 1521–1531.
  27. A. Roy-poirier, P. Champagne, A.M. Asce, Y. Filion, Review of bioretention system research and design: past, present, and future, J. Environ. Eng., (2010) 878–889.
  28. F.E. Botros, Y.S. Onsoy, T.R. Ginn, T. Harter, Richards equation based modeling to estimate flow and nitrate transport in a deep alluvial vadose zone, Vadose Zone J., (2012) 1–16.
  29. W.H. Green, G.A. Ampt, Studies on Soil Physics, Part I. The flow of air and water through soils, J. Agric. Sci., 4 (1911) 1–24.
  30. R.G. Mein, C.L. Larson, Modeling the infiltration component of the rainfall-runoff process, Water Resources Research Center, University of Minnesota, Technical report, 1971.
  31. R.G. Mein, C.L. Larson, Modeling infiltration during a steady rain, Wat. Resour. Res., (1973) 384–394.
  32. J.Y. Parlange, I. Lisle, R.D. Braddock, R.E. Smith, The three-parameter infiltration equation, Soil Sci., (1982) 337–341.
  33. W.F. Noh, P. Woodward, SLIC (Simple Line Interface Calculation). In Adriaan I van de Vooren and Pieter J Zandbergen, editors, Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede, (1976), 330–340.
  34. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys., 390 (1981) 201–225.
  35. M. García-Serrana, J.S. Gulliver, J.L. Nieber, Non-uniform overland flow-infiltration model for roadside swales, J. Hydrol., 552 (2017) 586–599.
  36. C. McShane, Transforming the use of urban sapce: a look at the revolution in street pavements, 1880–1924, J. Urban History, 5 (1979) 279–307.
  37. US EPA. National Management Measures to Control Nonpoint Source Pollution from Urban Areas, Technical report, 2005.
  38. US EPA. Urban Runoff: Low Impact Development. Polluted Runoff: Nonpoint Source Pollution, Online Factsheet, 2016.
  39. US EPA. National Water Quality Inventory: Report to Congress, Technical report, 2017.
  40. A. Vargas-Luna, A. Crosato, W.S.J. Uijttewaal, Effects of vegetation on flow and sediment transport: Comparative analyses and validation of predicting models, Earth Surface Process, Landforms, 400 (2015) 157–176.
  41. J. Zhang, Y. Zhong, W. Huai, Transverse distribution of streamwise velocity in open-channel flow with artificial emergent vegetation, Ecol. Eng., 110 (2018) 78–86.
  42. K. Shiono, D.W. Knight, Turbulent open-channel flows with variable depth across the channel, J. Fluid Mech., 222 (1991) 617–646.
  43. C. Liu, X. Luo, X. Liu, K. Yang, Modeling depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation, Adv. Wat. Resour., 60 (2013) 148–159.
  44. H.S. Kim, M. Nabi, I. Kimura, Y. Shimizu, Computational modeling of flow and morphodynamics through rigid-emergent vegetation, Adv. Water Resour., 84 (2015) 64–86.
  45. M. Nabi, H.J. De Vriend, E. Mosselman, C.J. Sloff, Y. Shimizu, Detailed simulation of morphodynamics: 1. Hydrodynamic model, Wat. Res., 480 (2012) 1–19.
  46. J. Smagorinsky, General circulation experiments with the primitive equations, Monthly Weather Rev., 910 (1963) 99–164.
  47. M. Gao, W. Huai, Y. Xiao, Z. Yang, B. Ji, Large eddy simulation of a vertical buoyant jet in a vegetated channel, Int. J. Heat Fluid Flow, 700 (2018) 114–124.
  48. J. Lu, H.C. Dai, Three-dimensional numerical modeling of flows and scalar transport in a vegetated channel, J. Hydro-Environ. Res., 16 (2017) 27–33.
  49. W.J. Wang, W.X. Huai, S. Thompson, W.Q. Peng, G.G. Katul, Drag coefficient estimation using flume experiments in shallow non-uniform water flow within emergent vegetation during rainfall, Ecol. Indic., 92 (2018) 367–378.
  50. M.M. Larmaei, T.F. Mahdi, Depth-averaged turbulent heat and fluid flow in a vegetated porous medium, Int. J. Heat Mass Transfer, 550 (2012) 848–863.
  51. N.R. Siriwardene, A. Deletic, T.D Fletcher, Clogging of stormwater infiltration systems and filters: insights from a laboratory study, Wat. Res., 41 (2007) 1433–1440.
  52. S. Achleitner, C. Engelhard, U. Stegner, W. Rauch, Local infiltration devices at parking sites: Experimental assessment of temporal changes in hydraulic and contaminant removal capacity, Wat. Sci. Technol., 550 (2007) 193–200.
  53. Montgomery County Maryland Department of Environmental Protection, How to Maintain Your Rain Barden, Bioswale, and Micro-bioretention Practice, Stormwater Facility Maintenance Program, Technical report, 2013.
  54. G.T. Blecken, W.F. Hunt III, A.M. Al-Rubaei, M. Viklander, W.G. Lord, Stormwater control measure (SCM) maintenance considerations to ensure designed functionality, Urban Wat. J., 14 (2017) 278–290.
  55. D. Jurries, Biofilters (Bioswales, Vegetative Buffers, and Constructed Wetlands) for Storm Water Discharge Pollution Removal, Department of Environmental Quality, State of Oregon, Technical report, 2003.
  56. Washington State Department of Transportation, Vegetative Filter Strips Tutorial, Technical report, 2008.
  57. Iowa Department of Natural Resources, Iowa Stormwater Management Manual, 2013.
  58. E.M. LaBolle, G.E. Fogg, A.F.B. Tompson, Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods, Wat. Resour. Res., 320 (1996) 583–593.
  59. M. Bergman, M.R. Hedegaard, M.F. Petersen, P. Binning, O. Mark, P.S. Mikkelsen, Evaluation of two stormwater infiltration trenches in central Copenhagen after 15 years of operation, Wat. Sci. Technol., 630 (2011) 2279–2286.
  60. E. Warnaars, A.V. Larsen, P. Jacobsen, P.S. Mikkelsen, Hydrological behavior of stormwater infiltration trenches in a central urban area during 2 3/4 years of operation, Wat. Sci. Technol., 39 (1999) 217–224.
  61. A.V. Mikkelsen, P.S. Warnaars, E. Larsen, NedsivningAfRegnvand Fra enBoligkarréPåNørrebro, University of Denmark, Technical report, 1999.
  62. S. Le Coustumer, T.D. Fletcher, A.Deletic, S. Barraud, P. Poelsma, The influence of design parameters on clogging of stormwater biofilters: A large-scale column study, Wat. Res., 460 (2012) 6743–6752.
  63. US EPA, Storm Water Management Model User’s Manual Version 5.1 Storm Water Management Model, Cincinnati, Ohio, Technical report, 2015
  64. M.A. Kachchu Mohamed, T. Lucke, F. Boogaard, Preliminary investigation into the pollution reduction performance of swales used in a stormwater treatment train, Wat. Sci. Technol., 690 (2014) 1014–1020.
  65. X. Sun, A.P. Davis, Heavy metal fates in laboratory bioretention systems, Chemosphere, 660 (2007) 1601–1609.
  66. M. Razzaghmanesh, M. Borst, Investigation clogging dynamic of permeable pavement systems using embedded sensors, J. Hydrol., 557 (2018) 887–896.
  67. C. Ulrich, S.S. Hubbard, J. Florsheim, D. Rosenberry, S. Borglin, M. Trotta, D. Seymour, Riverbed clogging associated with a California riverbank filtration system: An assessment of mechanisms and monitoring approaches, J. Hydrol., 529 (2015) 1740–1753.
  68. T. Grischek, R. Bartak, Riverbed clogging and sustainability of riverbank filtration, Water, 80 (2016) 1–12.
  69. L. Locatelli, O. Mark, P.S. Mikkelsen, K. Arnbjerg-Nielsen, T. Wong, P.J. Binning, Determining the extent of groundwater interference on the performance of infiltration trenches, J. Hydrol., 529 (2015) 1360–1372.
  70. K. Yao, M.T. Habibian, C.R. O’Melia, Water and waste water filtration: Concepts and applications, Environ. Eng. Sci., 50 (1971) 1105–1112.
  71. R. Rajagopalan, C. Tien, Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model, AIChE J., 220 (1976) 523–533.
  72. N. Tufenkji, M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media, Environ. Eng. Sci., 38 (2004) 529–536.
  73. K.E. Nelson, T.R. Ginn, Colloid filtration theory and the Happel sphere-in-cell model revisited with direct numerical simulation of colloids, Langmuir, 210 (2005) 2173–2184.
  74. J. Happel, Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles, AIChE J., 40 (1958) 197–201.
  75. A.S. Kim, Cylindrical cell model for direct contact membrane distillation (DCMD) of densely packed hollow fibers, J. Membr. Sci., 455 (2014) 168–186.
  76. A.S. Kim, A.E. Contreras, Q. Li, R. Yuan, Fundamental mechanisms of three-component combined fouling with experimental verification, Langmuir, 25 (2009) 7815–7827.
  77. A.S. Kim, R. Yan, Cake resistance of aggregates formed in the diffusion-limited-cluster-aggregation (DLCA) regime, J. Membr. Sci., 286 (2006) 260–268.
  78. A.S. Kim, H. Chen, R. Yuan, EPS biofouling in membrane filtration: an analytic modeling study, J. Colloid Interface Sci., (2006) 243–249.
  79. A.S. Kim, R. Yuan, Hydrodynamics of an ideal aggregate with quadratically increasing permeability, J. Colloid Interface Sci., 285 (2005) 627–633.
  80. A.S. Kim, R. Yuan, A new model for calculating specific resistance of aggregated colloidal cake layers in membrane filtration processes, J. Colloid Interface Sci., 249 (2005) 89–101.
  81. J.J. Lenhart, J.E. Saiers, Transport of silica colloids through unsaturated porous media: Experimental results and model comparisons, Environ. Sci. Technol., 360 (2002) 769–777.
  82. W. Zhang, V.L. Morales, M.E. Cakmak, A.E. Salvucci, L.D. Geohring, A.G. Hay, J. Parlange, T.S. Steenhuis, Colloid transport and retention in unsaturated porous media: Effect of colloid input concentration, Environ. Sci. Technol., 440 (2010) 4965–4972.
  83. T. Knappenberger, M. Flury, E.D. Mattson, J.B. Harsh, Does water content or flow rate control colloid transport in unsaturated porous media? Environ. Sci. Technol., 480 (2014) 3791– 3799.
  84. S. Xu, J. Qi, X. Chen, V. Lazouskaya, J. Zhuang, Y. Jin, Coupled effect of extended DLVO and capillary interactions on the retention and transport of colloids through unsaturated porous media, Sci. Total Environ., 573 (2016) 564–572.
  85. J.W. Delleur, New results and research needs on sediment movement in urban drainage, J. Wat. Res. Planning Manage., 1270 (2001) 186–193.
  86. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 400 (1918) 1361–1403.
  87. H. Freundlich, Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57 (1906) 385–470.
  88. Q. Xiao, E.G. McPherson, Performance of engineered soil and trees in a parking lot bioswale, Urban Wat. J., 80 (2011) 241–253.
  89. J.F. Good, A.D. O’Sullivan, D. Wicke, T.A. Cochrane, Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment, Wat. Sci. Technol., 650 (2012) 2154–2161.
  90. S.K. Mohanty, R. Valenca, A.W. Berger, I.K.M. Yu, X. Xiong, T.M. Saunders, D.C.W. Tsang, Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment, Sci. Total Environ., 625 (2018) 1644–1658.
  91. P. Shrestha, S.E. Hurley, B.C. Wemple, Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems, Ecol. Eng., 1120 (2018) 116–131.
  92. S.M. Charlesworth, E. Nnadi, O. Oyelola, J. Bennett, F. Warwick, R. Jackson, D. Lawson, Laboratory based experiments to assess the use of green and food-based compost to improve water quality in a sustainable drainage (SUDS) device such as a swale, Sci. Total Environ., 424 (2012) 337–343.
  93. S.A. Trowsdale, R. Simcock, Urban stormwater treatment using bioretention, J. Hydrol., 3970 (2011) 167–174.
  94. A.P. Davis, W.F. Hunt, R.G. Traver, M. Clar, Bioretention technology: overview of current practice and future needs, J. Environ. Eng., 135 (2009) 109–117.
  95. W.F. Hunt, A.P. Davis, R.G. Traver, Meeting hydrologic and water quality goals through targeted bioretention design, J. Environ. Eng., 138 (2012) 697–707.
  96. Water by Design, Bioretention Technical Design Guidelines, Technical report, Healthy Water Waterways Ltd, Brisbane, 2014.
  97. D.A. Chin, An Overview of Urban Stormwater Management Practices in Miami-Dade County, Florida, Technical report, U.S. Geological Survey, 2004.
  98. NDS, NDS Principles of Exterior Drainage: Short Course, Technical report, Lindsy, CA, 2007
  99. Virginia Department of Environmental Quality, Virginia DEQ Stormwater Design Specification Infiltration Practices, Technical report 8, 2013.
  100. M. Kayhanian, P.T. Weiss, J.S. Gulliver, L. Khazanovich, The Application of Permeable Pavement with Emphasis on Successful Design, Water Quality Benefits, and Identification of Knowledge and Data Gaps: A Summary Report, National Center for Sustainable Transportation, Technical report, 2015.
  101. F. Jaber, D. Woodson, C. LaChance, Y. Charriss, Stormwater Management: Rain gardens, Texas A&M AgriLife Extention, Technical report, 2012.
  102. M.E. Dietz, J.C. Clausen. A field evaluation of rain garden flow and pollutant treatment, Water Air, Soil Poll., 167 (2005) 123– 138.
  103. G. Mazer, D. Booth, K. Ewing, Limitations to vegetation establishment and growth in biofiltration swales, Ecol. Eng., 17 (2001) 429–443.
  104. North American Pipe Corporation, ASTM F758 PVC Highway Underdrain Pipe Solvent Weld, Technical report, 2017.
  105. H.N. Jenks, An investigation of perforated-pipe filter underdrains, Eng. News-Rec. (1921) 162–166.
  106. US Army Corps of Engineers, Investigation of Filter Requirements for Underdrains, Technical report, 1941.
  107. G. Roinas, C. Mant, J.B. Williams, Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems, Wat. Sci. Technol., 690 (2014) 703–709.
  108. H. Li, K. Li, X. Zhang, Performance evaluation of grassed swales for stormwater pollution control, Procedia Eng., 154 (2016) 898–910.
  109. J. Li, C. Jiang, T. Lei, Y. Li, Experimental study and simulation of water quality purification of urban surface runoff using non-vegetated bioswales, Ecol. Eng., 95 (2016) 706–713.
  110. Ü. Mander, J. Tournebize, K. Tonderski, J.T.A. Verhoeven, W.J. Mitsch, Planning and establishment principles for constructed wetlands and riparian buffer zones in agricultural catchments, Ecol. Eng., 103 (2017) 296–300.
  111. R.A. Purvis, R.J. Winston, W.F. Hunt, B. Lipscomb, K. Narayanaswamy, A. McDaniel, M.S. Lauffer, S. Libes, Evaluating the water quality benefits of a bioswale in Brunswick County, North Carolina (NC), USA, Water, 100 (2018) 1–16.
  112. P. Gobel, C. Dierkes, W.G. Coldewey, Storm water runoff concentration matrix for urban areas, J. Contaminant Hydrol., 910 (2007) 26–42.
  113. National Oceanic and Atmospheric Administration, Low Impact Development a Practitioner’s Guide for Hawaii, Technical report, 2006.
  114. City and County of Honolulu, Department of Planning and Permitting, Storm Water BMP Guide for New and Redevelopment, Technical report, 2017.
  115. C. Li, T.D Fletcher, H.P. Duncan, M.J. Burns, Can stormwater control measures restore altered urban flow regimes at the catchment scale? J. Hydrol., 549 (2017) 631–653.
  116. H.E. Golden, N. Hoghooghi, Green infrastructure and its catchment-scale effects: an emerging science. Wiley Interdisciplinary Reviews, Water, (2018) 1–14.