References
- National Research Council, A report of the national research
council: Urban stormwater management in the United States,
The National Academies Press, Washington D.C., 2008.
- National Research Council, Urban Stormwater Management in
the United States, The National Academies Press, Washington
D.C., 2009.
- US EPA, Storm Water Technology Fact Sheet - wet detention
ponds. Fact sheet, 1999.
- Prince George’s County, Stormwater Management Design
Manual, 2014.
- C. Hsieh, A.P. Davis, B.A. Needelman, Bioretention column
studies of phosphorus removal from urban stormwater runoff,
Water Environ. Res., 790 (2007) 177–184.
- P. Hamel, T.D. Fletcher, The impact of stormwater source-control
strategies on the (low) flow regime of urban catchments,
Wat. Sci. Technol., 690 (2014) 739–745.
- C. Yu, J. Duan, Simulation of surface runoff using hydrodynamic
model, J. Hydrol. Eng., 6 (2017) 1–12.
- A. Roy-Poirier, Y. Filion, P. Champagne, An event-based hydrologic
simulation model for bioretention systems, Water Sci.
Technol., 720 (2015) 1524–1533.
- R.A. Brown, R.W. Skaggs, W.F. Hunt, Calibration and validation
of DRAINMOD to model bioretention hydrology, J.
Hydrology, 486 (2013) 430–442.
- J. Yazdi, S.A.A. Salehi Neyshabouri, Environmental modelling
and software identifying low impact development strategies for
flood mitigation using a fuzzy-probabilistic approach, Environ.
Model. Software, 60 (2014) 31–44.
- A.B. Barton, J.R. Argue, Integrated urban water management
for residential areas: A reuse model, Wat. Sci. Technol., 600
(2009) 813–823.
- L. Ahiablame, R. Shakya, Modeling flood reduction effects of
low impact development at a watershed scale, J. Environ. Manage.,
171 (2016) 81–91.
- J. Gwang, A. Selvakumar, K. Alvi, J. Riverson, J.X. Zhen, L.
Shoemaker, F. Lai, Environmental modelling and software
a watershed-scale design optimization model for stormwater
best management practices, Environ. Model. Software, 60
(2012) 6–18.
- J. Gao, R. Wang, J. Huang, M. Liu, Application of BMP to urban
runoff control using SUSTAIN model: Case study in an industrial
area, Ecol. Model., 318 (2015) 177–183.
- R.A. Brown, R.W. Skaggs, W.F. Hunt III, Calibration and validation
of DRAINMOD to model bioretention hydrology, J.
Hydrology, 486 (2013) 430–442.
- A. Palla, I. Gnecco, Hydrologic modeling of low impact development
systems at the urban catchment scale, J. Hydrology,
528 (2015) 361–368.
- P. Xu, F. Gao, J. He, X. Ren, W. Xi, Modelling and optimization
of land use/land cover change in a developing urban catchment,
Wat. Sci. Technol., 75 (2017) 2527–2537.
- A.A. Bloorchian, L. Ahiablame, A. Osouli, J. Zhou, Modeling
BMP and vegetative cover performance for highway stormwater
runoff reduction, Procedia Eng., 145 (2016) 274–280.
- I.M. Brodie, Prediction of stormwater particle loads from
impervious urban surfaces based on a rainfall detachment
index, Wat. Sci. Technol., 51 (1999) 49–56.
- J. Zimmermann, C. Dierkes, P. Göbel, C. Klinger, H. Stubbe,
W.G. Coldewey, Metal concentrations in soil and seepage
water due to infiltration of roof runoff by long term numerical
modelling, Wat. Sci. Technol., 51 (2005) 11–19.
- I.M. Brodie, SSUIS - A research model for predicting suspended
solids loads in stormwater runoff from urban impervious
surfaces, Wat. Sci. Technol., 65 (2012) 2140–2147.
- J.M. Hathaway, R.A. Brown, J.S. Fu, W.F. Hunt, Bioretention
function under climate change scenarios in North Carolina, J.
Hydrology, 519 (2014) 503–511.
- V. Stovin, S. Poë, C. Berretta. A modelling study of long term
green roof retention performance, J. Environ. Manage., 131
(2013) 206–215.
- Y. Li, R.W. Babcock, Green roof hydrologic performance and
modeling: A review, Wat. Sci. Technol., 69 (2014) 727–738.
- T. Afrin, A.A. Khan, N.B. Kaye, F.Y. Testik, Numerical model
for the hydraulic performance of perforated pipe underdrains
surrounded by loose aggregate numerical model for the
hydraulic performance of perforated pipe underdrains surrounded
by loose aggregate, J. Hydraul. Eng., 145 (2016) 1–10.
- C. Hsieh, A.P. Davis, Evaluation and optimization of bioretention
media for treatment of urban storm water runoff, J. Environ.
Eng., 131 (2005) 1521–1531.
- A. Roy-poirier, P. Champagne, A.M. Asce, Y. Filion, Review of
bioretention system research and design: past, present, and
future, J. Environ. Eng., (2010) 878–889.
- F.E. Botros, Y.S. Onsoy, T.R. Ginn, T. Harter, Richards equation
based modeling to estimate flow and nitrate transport in a
deep alluvial vadose zone, Vadose Zone J., (2012) 1–16.
- W.H. Green, G.A. Ampt, Studies on Soil Physics, Part I. The
flow of air and water through soils, J. Agric. Sci., 4 (1911) 1–24.
- R.G. Mein, C.L. Larson, Modeling the infiltration component
of the rainfall-runoff process, Water Resources Research Center,
University of Minnesota, Technical report, 1971.
- R.G. Mein, C.L. Larson, Modeling infiltration during a steady
rain, Wat. Resour. Res., (1973) 384–394.
- J.Y. Parlange, I. Lisle, R.D. Braddock, R.E. Smith, The three-parameter
infiltration equation, Soil Sci., (1982) 337–341.
- W.F. Noh, P. Woodward, SLIC (Simple Line Interface Calculation).
In Adriaan I van de Vooren and Pieter J Zandbergen,
editors, Proceedings of the Fifth International Conference on
Numerical Methods in Fluid Dynamics June 28–July 2, 1976
Twente University, Enschede, (1976), 330–340.
- C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the
dynamics of free boundaries, J. Comp. Phys., 390 (1981) 201–225.
- M. García-Serrana, J.S. Gulliver, J.L. Nieber, Non-uniform overland
flow-infiltration model for roadside swales, J. Hydrol., 552
(2017) 586–599.
- C. McShane, Transforming the use of urban sapce: a look at the
revolution in street pavements, 1880–1924, J. Urban History, 5
(1979) 279–307.
- US EPA. National Management Measures to Control Nonpoint
Source Pollution from Urban Areas, Technical report, 2005.
- US EPA. Urban Runoff: Low Impact Development. Polluted
Runoff: Nonpoint Source Pollution, Online Factsheet, 2016.
- US EPA. National Water Quality Inventory: Report to Congress,
Technical report, 2017.
- A. Vargas-Luna, A. Crosato, W.S.J. Uijttewaal, Effects of vegetation
on flow and sediment transport: Comparative analyses
and validation of predicting models, Earth Surface Process,
Landforms, 400 (2015) 157–176.
- J. Zhang, Y. Zhong, W. Huai, Transverse distribution of streamwise
velocity in open-channel flow with artificial emergent
vegetation, Ecol. Eng., 110 (2018) 78–86.
- K. Shiono, D.W. Knight, Turbulent open-channel flows with
variable depth across the channel, J. Fluid Mech., 222 (1991)
617–646.
- C. Liu, X. Luo, X. Liu, K. Yang, Modeling depth-averaged
velocity and bed shear stress in compound channels with
emergent and submerged vegetation, Adv. Wat. Resour., 60
(2013) 148–159.
- H.S. Kim, M. Nabi, I. Kimura, Y. Shimizu, Computational modeling
of flow and morphodynamics through rigid-emergent
vegetation, Adv. Water Resour., 84 (2015) 64–86.
- M. Nabi, H.J. De Vriend, E. Mosselman, C.J. Sloff, Y. Shimizu,
Detailed simulation of morphodynamics: 1. Hydrodynamic
model, Wat. Res., 480 (2012) 1–19.
- J. Smagorinsky, General circulation experiments with the
primitive equations, Monthly Weather Rev., 910 (1963) 99–164.
- M. Gao, W. Huai, Y. Xiao, Z. Yang, B. Ji, Large eddy simulation
of a vertical buoyant jet in a vegetated channel, Int. J. Heat
Fluid Flow, 700 (2018) 114–124.
- J. Lu, H.C. Dai, Three-dimensional numerical modeling of
flows and scalar transport in a vegetated channel, J. Hydro-Environ.
Res., 16 (2017) 27–33.
- W.J. Wang, W.X. Huai, S. Thompson, W.Q. Peng, G.G. Katul,
Drag coefficient estimation using flume experiments in shallow
non-uniform water flow within emergent vegetation
during rainfall, Ecol. Indic., 92 (2018) 367–378.
- M.M. Larmaei, T.F. Mahdi, Depth-averaged turbulent heat and
fluid flow in a vegetated porous medium, Int. J. Heat Mass
Transfer, 550 (2012) 848–863.
- N.R. Siriwardene, A. Deletic, T.D Fletcher, Clogging of stormwater
infiltration systems and filters: insights from a laboratory
study, Wat. Res., 41 (2007) 1433–1440.
- S. Achleitner, C. Engelhard, U. Stegner, W. Rauch, Local infiltration
devices at parking sites: Experimental assessment
of temporal changes in hydraulic and contaminant removal
capacity, Wat. Sci. Technol., 550 (2007) 193–200.
- Montgomery County Maryland Department of Environmental
Protection, How to Maintain Your Rain Barden, Bioswale,
and Micro-bioretention Practice, Stormwater Facility Maintenance
Program, Technical report, 2013.
- G.T. Blecken, W.F. Hunt III, A.M. Al-Rubaei, M. Viklander,
W.G. Lord, Stormwater control measure (SCM) maintenance
considerations to ensure designed functionality, Urban Wat. J.,
14 (2017) 278–290.
- D. Jurries, Biofilters (Bioswales, Vegetative Buffers, and Constructed
Wetlands) for Storm Water Discharge Pollution
Removal, Department of Environmental Quality, State of Oregon,
Technical report, 2003.
- Washington State Department of Transportation, Vegetative
Filter Strips Tutorial, Technical report, 2008.
- Iowa Department of Natural Resources, Iowa Stormwater
Management Manual, 2013.
- E.M. LaBolle, G.E. Fogg, A.F.B. Tompson, Random-walk simulation
of transport in heterogeneous porous media: Local
mass-conservation problem and implementation methods,
Wat. Resour. Res., 320 (1996) 583–593.
- M. Bergman, M.R. Hedegaard, M.F. Petersen, P. Binning,
O. Mark, P.S. Mikkelsen, Evaluation of two stormwater infiltration
trenches in central Copenhagen after 15 years of operation,
Wat. Sci. Technol., 630 (2011) 2279–2286.
- E. Warnaars, A.V. Larsen, P. Jacobsen, P.S. Mikkelsen, Hydrological
behavior of stormwater infiltration trenches in a central
urban area during 2 3/4 years of operation, Wat. Sci. Technol.,
39 (1999) 217–224.
- A.V. Mikkelsen, P.S. Warnaars, E. Larsen, NedsivningAfRegnvand
Fra enBoligkarréPåNørrebro, University of Denmark,
Technical report, 1999.
- S. Le Coustumer, T.D. Fletcher, A.Deletic, S. Barraud, P.
Poelsma, The influence of design parameters on clogging of
stormwater biofilters: A large-scale column study, Wat. Res.,
460 (2012) 6743–6752.
- US EPA, Storm Water Management Model User’s Manual Version
5.1 Storm Water Management Model, Cincinnati, Ohio,
Technical report, 2015
- M.A. Kachchu Mohamed, T. Lucke, F. Boogaard, Preliminary
investigation into the pollution reduction performance of
swales used in a stormwater treatment train, Wat. Sci. Technol.,
690 (2014) 1014–1020.
- X. Sun, A.P. Davis, Heavy metal fates in laboratory bioretention
systems, Chemosphere, 660 (2007) 1601–1609.
- M. Razzaghmanesh, M. Borst, Investigation clogging dynamic
of permeable pavement systems using embedded sensors, J.
Hydrol., 557 (2018) 887–896.
- C. Ulrich, S.S. Hubbard, J. Florsheim, D. Rosenberry, S. Borglin,
M. Trotta, D. Seymour, Riverbed clogging associated with a California
riverbank filtration system: An assessment of mechanisms
and monitoring approaches, J. Hydrol., 529 (2015) 1740–1753.
- T. Grischek, R. Bartak, Riverbed clogging and sustainability of
riverbank filtration, Water, 80 (2016) 1–12.
- L. Locatelli, O. Mark, P.S. Mikkelsen, K. Arnbjerg-Nielsen,
T. Wong, P.J. Binning, Determining the extent of groundwater
interference on the performance of infiltration trenches, J.
Hydrol., 529 (2015) 1360–1372.
- K. Yao, M.T. Habibian, C.R. O’Melia, Water and waste water filtration:
Concepts and applications, Environ. Eng. Sci., 50 (1971)
1105–1112.
- R. Rajagopalan, C. Tien, Trajectory analysis of deep-bed filtration
with the sphere-in-cell porous media model, AIChE J., 220
(1976) 523–533.
- N. Tufenkji, M. Elimelech, Correlation equation for predicting
single-collector efficiency in physicochemical filtration in saturated
porous media, Environ. Eng. Sci., 38 (2004) 529–536.
- K.E. Nelson, T.R. Ginn, Colloid filtration theory and the Happel
sphere-in-cell model revisited with direct numerical simulation
of colloids, Langmuir, 210 (2005) 2173–2184.
- J. Happel, Viscous flow in multiparticle systems: slow motion
of fluids relative to beds of spherical particles, AIChE J., 40
(1958) 197–201.
- A.S. Kim, Cylindrical cell model for direct contact membrane
distillation (DCMD) of densely packed hollow fibers, J. Membr.
Sci., 455 (2014) 168–186.
- A.S. Kim, A.E. Contreras, Q. Li, R. Yuan, Fundamental mechanisms
of three-component combined fouling with experimental
verification, Langmuir, 25 (2009) 7815–7827.
- A.S. Kim, R. Yan, Cake resistance of aggregates formed in
the diffusion-limited-cluster-aggregation (DLCA) regime, J.
Membr. Sci., 286 (2006) 260–268.
- A.S. Kim, H. Chen, R. Yuan, EPS biofouling in membrane filtration:
an analytic modeling study, J. Colloid Interface Sci.,
(2006) 243–249.
- A.S. Kim, R. Yuan, Hydrodynamics of an ideal aggregate with
quadratically increasing permeability, J. Colloid Interface Sci.,
285 (2005) 627–633.
- A.S. Kim, R. Yuan, A new model for calculating specific resistance
of aggregated colloidal cake layers in membrane filtration
processes, J. Colloid Interface Sci., 249 (2005) 89–101.
- J.J. Lenhart, J.E. Saiers, Transport of silica colloids through
unsaturated porous media: Experimental results and model
comparisons, Environ. Sci. Technol., 360 (2002) 769–777.
- W. Zhang, V.L. Morales, M.E. Cakmak, A.E. Salvucci, L.D.
Geohring, A.G. Hay, J. Parlange, T.S. Steenhuis, Colloid transport
and retention in unsaturated porous media: Effect of colloid
input concentration, Environ. Sci. Technol., 440 (2010) 4965–4972.
- T. Knappenberger, M. Flury, E.D. Mattson, J.B. Harsh, Does
water content or flow rate control colloid transport in unsaturated
porous media? Environ. Sci. Technol., 480 (2014) 3791–
3799.
- S. Xu, J. Qi, X. Chen, V. Lazouskaya, J. Zhuang, Y. Jin, Coupled
effect of extended DLVO and capillary interactions on
the retention and transport of colloids through unsaturated
porous media, Sci. Total Environ., 573 (2016) 564–572.
- J.W. Delleur, New results and research needs on sediment
movement in urban drainage, J. Wat. Res. Planning Manage.,
1270 (2001) 186–193.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 400 (1918) 1361–1403.
- H. Freundlich, Über die adsorption in lösungen. Zeitschrift für Physikalische
Chemie, 57 (1906) 385–470.
- Q. Xiao, E.G. McPherson, Performance of engineered soil and
trees in a parking lot bioswale, Urban Wat. J., 80 (2011) 241–253.
- J.F. Good, A.D. O’Sullivan, D. Wicke, T.A. Cochrane, Contaminant
removal and hydraulic conductivity of laboratory rain
garden systems for stormwater treatment, Wat. Sci. Technol.,
650 (2012) 2154–2161.
- S.K. Mohanty, R. Valenca, A.W. Berger, I.K.M. Yu, X. Xiong,
T.M. Saunders, D.C.W. Tsang, Plenty of room for carbon on the
ground: Potential applications of biochar for stormwater treatment,
Sci. Total Environ., 625 (2018) 1644–1658.
- P. Shrestha, S.E. Hurley, B.C. Wemple, Effects of different soil
media, vegetation, and hydrologic treatments on nutrient and
sediment removal in roadside bioretention systems, Ecol. Eng.,
1120 (2018) 116–131.
- S.M. Charlesworth, E. Nnadi, O. Oyelola, J. Bennett, F. Warwick,
R. Jackson, D. Lawson, Laboratory based experiments
to assess the use of green and food-based compost to improve
water quality in a sustainable drainage (SUDS) device such as
a swale, Sci. Total Environ., 424 (2012) 337–343.
- S.A. Trowsdale, R. Simcock, Urban stormwater treatment
using bioretention, J. Hydrol., 3970 (2011) 167–174.
- A.P. Davis, W.F. Hunt, R.G. Traver, M. Clar, Bioretention technology:
overview of current practice and future needs, J. Environ.
Eng., 135 (2009) 109–117.
- W.F. Hunt, A.P. Davis, R.G. Traver, Meeting hydrologic and
water quality goals through targeted bioretention design, J.
Environ. Eng., 138 (2012) 697–707.
- Water by Design, Bioretention Technical Design Guidelines,
Technical report, Healthy Water Waterways Ltd, Brisbane,
2014.
- D.A. Chin, An Overview of Urban Stormwater Management
Practices in Miami-Dade County, Florida, Technical report,
U.S. Geological Survey, 2004.
- NDS, NDS Principles of Exterior Drainage: Short Course,
Technical report, Lindsy, CA, 2007
- Virginia Department of Environmental Quality, Virginia DEQ
Stormwater Design Specification Infiltration Practices, Technical
report 8, 2013.
- M. Kayhanian, P.T. Weiss, J.S. Gulliver, L. Khazanovich, The
Application of Permeable Pavement with Emphasis on Successful
Design, Water Quality Benefits, and Identification of
Knowledge and Data Gaps: A Summary Report, National Center
for Sustainable Transportation, Technical report, 2015.
- F. Jaber, D. Woodson, C. LaChance, Y. Charriss, Stormwater
Management: Rain gardens, Texas A&M AgriLife Extention,
Technical report, 2012.
- M.E. Dietz, J.C. Clausen. A field evaluation of rain garden flow
and pollutant treatment, Water Air, Soil Poll., 167 (2005) 123–
138.
- G. Mazer, D. Booth, K. Ewing, Limitations to vegetation establishment
and growth in biofiltration swales, Ecol. Eng., 17
(2001) 429–443.
- North American Pipe Corporation, ASTM F758 PVC Highway
Underdrain Pipe Solvent Weld, Technical report, 2017.
- H.N. Jenks, An investigation of perforated-pipe filter underdrains,
Eng. News-Rec. (1921) 162–166.
- US Army Corps of Engineers, Investigation of Filter Requirements
for Underdrains, Technical report, 1941.
- G. Roinas, C. Mant, J.B. Williams, Fate of hydrocarbon pollutants
in source and non-source control sustainable drainage
systems, Wat. Sci. Technol., 690 (2014) 703–709.
- H. Li, K. Li, X. Zhang, Performance evaluation of grassed
swales for stormwater pollution control, Procedia Eng., 154
(2016) 898–910.
- J. Li, C. Jiang, T. Lei, Y. Li, Experimental study and simulation
of water quality purification of urban surface runoff using
non-vegetated bioswales, Ecol. Eng., 95 (2016) 706–713.
- Ü. Mander, J. Tournebize, K. Tonderski, J.T.A. Verhoeven, W.J.
Mitsch, Planning and establishment principles for constructed
wetlands and riparian buffer zones in agricultural catchments,
Ecol. Eng., 103 (2017) 296–300.
- R.A. Purvis, R.J. Winston, W.F. Hunt, B. Lipscomb, K.
Narayanaswamy, A. McDaniel, M.S. Lauffer, S. Libes, Evaluating
the water quality benefits of a bioswale in Brunswick
County, North Carolina (NC), USA, Water, 100 (2018) 1–16.
- P. Gobel, C. Dierkes, W.G. Coldewey, Storm water runoff concentration
matrix for urban areas, J. Contaminant Hydrol., 910
(2007) 26–42.
- National Oceanic and Atmospheric Administration, Low
Impact Development a Practitioner’s Guide for Hawaii, Technical
report, 2006.
- City and County of Honolulu,
Department of Planning and Permitting, Storm Water BMP
Guide for New and Redevelopment, Technical report, 2017.
- C. Li, T.D Fletcher, H.P. Duncan, M.J. Burns, Can stormwater
control measures restore altered urban flow regimes at the
catchment scale? J. Hydrol., 549 (2017) 631–653.
- H.E. Golden, N. Hoghooghi, Green infrastructure and its
catchment-scale effects: an emerging science. Wiley Interdisciplinary
Reviews, Water, (2018) 1–14.