References
- W. Yongqing, N. Lior, Proposal and analysis of a high-efficiency
combined desalination and refrigeration system based
on the LiBr–H2O absorption cycle—Part 1: System configuration
and mathematical model. Energy Convers. Manag., 52(1)
(2011) 220–227.
- T.P. Gregory, E.W. Tow, L.D. Banchik, H.W. Chung, J.H. Lienhard,
Energy consumption in desalinating produced water
from shale oil and gas extraction. Desalination, 366 (2015)
94–112.
- M.V.V. Rane, Y.S. Padiya, Heat pump operated freeze concentration
system with tubular heat exchanger for seawater
desalination, Energy Sustain Dev., 15 (2011) 184–191.
- S. Oumar, N. Galanis, M. Sorin, Thermodynamic study of
multi-effect thermal vapour-compression desalination systems.
Energy, 72 (2014) 69–79.
- V.G. Gude, N. Nirmalakhandan, Combined desalination
and solar-assisted air-conditioning system, Energy Convers.
Manag, 49(11) (2008) 3326–3330.
- A. Farsi, S.H. Mohammadi, M. Ameri, An efficient combination
of transcritical CO2 refrigeration and multi-effect desalination:
Energy and economic analysis. Energy Convers. Manag, 127
(2016) 561–575.
- A. Christ, R.L. Klaus, C.T. Hui, Boosted multi-effect distillation
for sensible low-grade heat sources: a comparison with feed
pre-heating multi-effect distillation. Desalination, 366 (2015)
32–46.
- A. Christ, R.L. Klaus, C.T. Hui, Thermodynamic optimization
of multi effect distillation driven by sensible heat sources.
Desalination, 336 (2014) 160–167.
- M. Hosseini, I. Dincer, P. Ahmadi, H.B. Avval, M. Ziaasharhagh,
Thermodynamic modelling of an integrated solid oxide
fuel cell and micro gas turbine system for desalination purposes.
Int. J. Energy Res., 37(5) (2013) 426–434.
- Y. Ma, L. Zhongyan, T. Hua, A review of transcritical carbon
dioxide heat pump and refrigeration cycles, Energy 55 (2013)
156–172.
- Handbook, A. S. H. R. A. E. Refrigeration, 1791 Tullie Circle,
NE Atlanta, GA 30329, 2010.
- J. Sarkar, A. Neeraj, Performance optimization of transcritical
CO2 cycle with parallel compression economization. Int. J.
Therm. Sci., 49(5) (2010) 838–843.
- J.L. Yang, Y.T. Ma, M.X. Li, H.Q. Guan, Exergy analysis of transcritical
carbon dioxide refrigeration cycle with an expander.
Energy, 30(7) (2005) 1162–1175.
- O.J. Shariatzadeh, S.S. Abolhassani, M. Rahmani, M.Z. Nejad,
Comparison of transcritical CO2 refrigeration cycle with
expander and throttling valve including/excluding internal
heat exchanger: Exergy and energy points of view. Appl.
Therm. Eng., 93 (2016) 779–787.
- J. Wang, P. Zhao, X. Niu, Y. Dai, Parametric analysis of a new
combined cooling, heating and power system with transcritical
CO2 driven by solar energy. Appl. Energy, 94 (2012) 58–64.
- S.H. Mohammadi, M. Ameri, Energy and exergy analysis of
absorption–compression hybrid air-conditioning system.
HVAC & R Res., 19(6) (2013) 744–753.
- H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water
Desalination, Elsevier, 2002.
- L. Awerbuch, Understanding of thermal distillation desalination
processes, IDA Academy, Singapore, 2012.
- A.H. Mosaffa, L.G. Farshi, C.I. Ferreira, M.A. Rosen, Exergoeconomic
and environmental analyses of CO2/NH3 cascade
refrigeration systems equipped with different types of flash
tank inter coolers. Energy Convers. Manag., 117 (2016) 442–453.
- B.T. Austin, K. Sumathy, Transcritical carbon dioxide heat
pump systems: A review, Renew Sust. Energ Rev., 15(8) (2011)
4013–4029.
- Z.B. Liu, Y.L. He, Y.F. Yang, J.Y. Fei, Experimental study on heat
transfer and pressure drop of supercritical CO2 cooled in a
large tube. Appl. Therm. Eng., 70(1) (2014) 307–315.
- I.S. Al-Mutaz, I. Wazeer, Comparative performance evaluation
of conventional multi-effect evaporation desalination processes,
Appl. Therm. Eng., 73(1) (2014) 1194–1203.
- Y.A. Cengel, M.A. Boles, An engineering approach, Energy,
2002.
- R.K. Shah, D.P. Sekulic, Fundamentals of Heat Exchanger
Design. John Wiley & Sons, 2003.
- I.J. Esfahani, A. Ataei, V. Shetty,T. Oh, J.H. Park, C. Yoo, Modeling
and genetic algorithm-based multi-objective optimization
of the MED-TVC desalination system, Desalination, 292 (2012)
87–104.
- M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Thermophysical
properties of seawater: a review of existing correlations and
data. Desal. Water Treat., 16 (2010) 354–380.
- H. Ghaebi, M. Amidpour, S. Karimkashi, O. Rezayan, Energy,
exergy and thermo economic analysis of a combined cooling,
heating and power (CCHP) system with gas turbine prime
mover,Int. J. Energ. Res., 35(8) (2011) 697–709.
- A. Bejan, Advanced Engineering Thermodynamics, 3rd ed.;
John Wiley & Sons, Inc: Hoboken, NJ, USA, 2006.
- M.J. Moran, Availability Analysis: A Guide to Efficient Energy
Use. ASME Press, New York, 1989.
- J.R. Cooper, Release on the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater. The International
Association for the Properties of Water and Steam, September,
2008, pp. 1–19.
- M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Formulation of
seawater flow exergy using accurate thermodynamic data.
International Mechanical Engineering Congress and Exposition,
ASME, 5 (2010) 675–682.
- M.H. Sharqawy, S.M. Zubair, On exergy calculations of seawater
with applications in desalination systems, Int. J. Therm.
Sci., 50(2) (2011) 187–196.
- X. Wang, A. Christ, K. Regenauer-Lieb, K. Hooman, H.T. Chua,
Low grade heat driven multi-effect distillation technology. Int.
J. Heat Mass Transfer, 54 (2011) 5497–5503.
- J. Szargut, Exergy Method: Technical and Ecological Applications,
2005.
- Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering
Approach, McGraw-Hill Education, 2015.
- H.T. El-Dessouky, H.M. Ettouney, F. Mandani, Performance of
parallel feed multiple effect evaporation system for seawater
desalination. Appl. Therm. Eng., 20(17) (2000) 1679–1706.