References

  1. F. Brikké, M. Bredero, W. Supply, Linking technology choice with operation and maintenance in the context of community water supply and sanitation: A reference document for planners and project staff, World Health Organization and IRC Water and Sanitation Centre, Geneva, (2003).
  2. D.A. Okun, Distributing reclaimed water through dual systems, J. AWWA, 89 (1997) 52–64.
  3. M.D. Sobsey, Managing water in the home: accelerated health gains from improved water supply, Sanitation water and World Health Organization, Geneva, 2002.
  4. M.S. Zipf, I.G. Pinheiro, M.G. Conegero, Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon, J. Environ. Manage., 176 (2016) 119–127.
  5. C. Li, Y. Wu, L. Zhang, W. Liu, Impacts of soil and water pollution on food safety and health risks in China, Environ. Int. , 77 (2015) 5–15.
  6. E. Guchi, Review on slow sand filtration in removing microbial contamination and particles from drinking, Am. J. Food Nutr., 3 (2015) 47–55.
  7. X. Cao, J. Liu, X. Meng, Evaluation of a slow sand filter in advanced wastewater treatment, Mechanic Automation and Control Engineering (MACE), Wuhan, 2010.
  8. I. Kader Yettefti, F.E. Aboussabiq, S. Etahiri, D. Malamis, O. Assobhei, Slow sand filtration of effluent from an anaerobic denitrifying reactor for tertiary treatment: a comparable study, using three Moroccan sands, Carpath. J. Earth Env., 8 (2013) 207–218.
  9. R.E. Arndt, E.J. Wagner, Rapid and slow sand filtration techniques and their efficacy at filtering triactinomyxons of Myxobolus cerebralis from contaminated water, N. Am. J. Aquacult., 66 (2004) 261–270.
  10. S. Yousaf, S. Khan, H. Sher, I. Afridi, D. Ahmad, Canal water treatment with rapid sand filtration, Soil Environ., 32 (2013) 103–107.
  11. H. Guo, F. Lim, Y. Zhang, L. Lee, J. Hu, S. Ong, W. Yau, G. Ong, Soil column studies on the performance evaluation of engineered soil mixes for bioretention systems, Desal. Water Treat., 54 (2015) 3661–3667.
  12. L.A. Kaplan, M. Hulla, L. Sappelsa: The role of organic matter in structuring microbial communities, IWA Publishing, London, (2005).
  13. S. Van Haute, I. Sampers, K. Van Belleghem, M. Uyttendaele, Use of biopolymers and rapid sand filtration as physicochemical reconditioning technique for vegetable washing processes, Food Micro, Abstracts, (2012) 332–332.
  14. B. Deboch, K. Faris, Evaluation of the efficiency of rapid sand filtration, 25th WEDC Conference, Adis Ababa, (1999).
  15. V.B. Patil, G.S. Kulkarni, V.S Kore, Performance of horizontal roughing filters for Wastewater: A review, Inter. Res. J. Environ. Sci., 1 (2012) 53–55.
  16. O. Nkwonta, G. Ochieng, Roughing filter for water pre-treatment technology in developing countries: A review, Int. J. Phys. Sci., 4 (2009) 455–463.
  17. M.N. Adlan, H.A. Aziz, H.T. Maung, Y.T. Hung, Performance of horizontal flow roughing filter using limestone media for the removal of turbidity, suspended solids, biochemical oxygen demand and coliform organisms from wastewater, Int. J. Environ. Waste Manag., 2 (2008) 203–214.
  18. M. Khazaei, R. Nabizadeh, A.H. Mahvi, H. Izanloo, R. Ansari Tadi, F. Gharagazloo, Nitrogen and phosphorous removal from aerated lagoon effluent using horizontal roughing filter (HRF), Desal. Water Treat., 57 (2016) 5425–5434.
  19. S.M. Khezri, G. Majidi, H. Jafari Mansoorian, M. Ansari, F. Atabi, T. Tohidi Mogaddam, N. Rashtchi, Efficiency of horizontal roughing filter in removing nitrate, phosphate and chemical oxygen demand from effluent of waste stabilization pond, Environ. Heal. Eng. Manag. J., 2 (2015) 87–92.
  20. K. Ushijima, K. Ito, R. Ito, N. Funamizu, Greywater treatment by slanted soil system, Ecol. Eng., 50 (2013) 62–68.
  21. T. Itayama, M. Kiji, A. Suetsugu, N. Tanaka, T. Saito, N. Iwami, M. Mizuochi, Y. Inamori, On site experiments of the slanted soil treatment systems for domestic gray water, Water Sci. Technol., 53 (2006) 193–201.
  22. K. Ito, Design of the slanted soil graywater treatment system for arid zones in developing countries, Master of Engineering thesis, Hokkaido University, Japan, (2010).
  23. K. Ushijima, E. Tanaka, L. Y. Suzuki, N. Hijikata, N. Funamizu, R. Ito, Grey water treatment by the slanted soil system with unsorted soil media, Environ. Technol., 36 (2015) 2603–2609.
  24. E. Bitie, Etude comparative des performances épuratoires de pilotes de traitement des eaux grises par «bac incliné» en zone sahélienne, Institut International d’Ingénierie de l’Eau et de l’Environnement, Ouagadougou – Burkina Faso, (2013).
  25. F. Some, Contribution à l’optimisation des performances épuratoires d’un dispositif de traitement des eaux grises par « Bac incliné » en milieu péri–urbain : cas de Kamboinsé Institut International d’Ingénierie de l’Eau et de l’Environnement, Ouagadougou – Burkina Faso, (2012).
  26. E. Soyer, Ö. Akgiray, N.Ö. Eldem, A.M. Saatçı, Crushed recycled glass as a filter medium and comparison with silica sand, CLEAN–Soil Air Water, 38 (2010) 927–935.
  27. W.F. Duke, R. Nordin, A. Mazumder, The use and performance of BioSand filters in the Artibonite Valley of Haiti: a field study of 107 households, Rural Rem. Heal., 6 (2006) 570.
  28. Z. Abudi, The effect of sand filter characteristics on removal efficiency of organic matter from grey water Al-Qadisiyah, J. Eng. Sci., 4 (2011) 143–155.
  29. P. Vara Lakshmi, V. Saritha, K. Swetha Chowdhary, G. Mallika, B.S. Harish Kumar, Biosand filter for removal of chemical contaminants from water, J. Adv. Lab. Res. Biol., 3 (2012) 103–108.
  30. J.E. Kogel, Industrial Minerals and Rocks: Commodities, Markets, and Uses, SME, Colorado, 2006.
  31. J.G. Outram, S.J. Couperthwaite, G.J. Millar, Comparitve analysis of the physical, chemical and structural characteristics and performance of manganese greensands, J. Water Proc. Eng., 13 (2016) 16–26.
  32. W.J. Mitsch, J.G. Gosselink, Wetland Management and Protection. in: Wetlands, John Wiley & Sons, Inc., 1993, pp. 541–576.
  33. J. Vymazal, Removal of nutrients in various types of constructed wetlands, Sci. Total Environ., 380 (2007) 48–65.
  34. S. Lavrova, B. Koumanova, Nutrients and organic matter removal in a vertical-flow constructed wetland, Applied Bioremediation - Active and Passive Approaches. InTech., (2013) 69–99.
  35. T.G. Ammari, Y. Al-Zu’bi, A. Al-Balawneh, R. Tahhan, M. Al-Dabbas, R.A. Ta’any, R. Abu-Harb, An evaluation of the re-circulated vertical flow bioreactor to recycle rural greywater for irrigation under arid Mediterranean bioclimate, Ecol. Eng., 70 (2014) 16–24.
  36. L. Darío Sánchez, A. Sánchez, G. Galvis, J. Latorre, Multi-Stage Filtration, IRC International Water and Sanitation Centre, Colombia, 2006.
  37. C. Jiang, L. Jia, B. Zhang, Y. He, G. Kirumba, Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution, J. Environ. Sci., 26 (2014) 466–477.
  38. X. Zhang, L. Guo, Y. Wang, C. Ruan, Removal of oxygen demand and nitrogen using different particle sizes of anthracite coated with nine kinds of LDHs for wastewater treatment, Scient. Reports, 5 (2015) 1–9.
  39. B. Kazemi Noredinvand, A. Takdastan, R. Jalilzadeh Yengejeh, Removal of organic matter from drinking water by single and dual media filtration: a comparative pilot study, Desal. Water Treat., 44 (2015) 20792–20799.
  40. A. Katukiza, M. Ronteltap, C. Niwagaba, F. Kansiime, P. Lens, Grey water characterisation and pollutant loads in an urban slum, Int. J. Environ. Sci. Tech., 12 (2015) 423–436.
  41. A.Y. Katukiza, M. Ronteltap, C.B. Niwagaba, F. Kansiime, P.N.L. Lens, A two-step crushed lava rock filter unit for grey water treatment at household level in an urban slum, J. Environ. Manag., 133 (2014) 258–267.
  42. R. Tammisetti, M. Padmanabhan, Research on the Effectiveness of Using Cloth as a Filter to Remove Turbidity from Water, Scientia Review, (2010).
  43. R.R. Colwell, A. Huq, M.S. Islam, K. Aziz, M. Yunus, N.H. Khan, A. Mahmud, R.B. Sack, G.B. Nair, J. Chakraborty, Reduction of cholera in Bangladeshi villages by simple filtration, Proc. Nat. Acad. Sci., 100 (2003) 1051–1055.
  44. L. Chan, M. Chan, J. Wang, Design of Water Filter for Third World Countries, report, Department of Mechanical and Industrial Engineering, Univ. Toronto, (2009).
  45. E. Erhuanga, I.B. Kashim, T.L. Akinbogun, Development of ceramic filters for household water treatment in Nigeria, Art Design Rev., 2 (2014) 6.
  46. J.M. Brown, Effectiveness of ceramic filtration for drinking water treatment in Cambodia, Doctoral dissertation, The University of North Carolina at Chapel Hill, (2007).
  47. X. Chen, X. Huang, S. He, X. Yu, M. Sun, X. Wang, H. Kong, Pilot-scale study on preserving eutrophic landscape pond water with a combined recycling purification system, Ecol. Eng., 61 (2013) 383–389.
  48. C.C. Ho, P.H. Wang, Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials, Int. J. Environ. Res. Public Health, 12 (2015) 3362–3380.
  49. A. Varkey, M. Dlamini, Point-of-use water purification using clay pot water filters and copper mesh, Water SA, 38 (2012) 721–726.
  50. K. Naddafi, A. Mahvi, S. Nasseri, M. Mokhtari, H. Zeraati, Evaluation of the efficiency of clay pots in removal of water impurities, J. Environ. Health Sci. Eng., 2 (2005) 12–16.
  51. J. De la Noue, N. De Pauw, The potential of microalgal biotechnology: a review of production and uses of microalgae, Biotechnol. Adv., 6 (1988) 725–770.
  52. N. Santhanam: Oilgae Guide to Algae-based Wastewater Treatment, Home of Algal Energy, e-book Oligae, Tamilnadu, India, 2009.
  53. M.A. Borowitzka, Microalgae as sources of pharmaceuticals and other biologically active compounds, J. Appl. Phycology, 7 (1995) 3–15.
  54. M.A. Borowitzka, Limits to Growth, Wastewater Treatment with Algae, Springer, 1998.
  55. S. Moreno, Y. Sanchez, L. Rodriguez, Purification and characterization of the invertase from Schizosaccharomyces pombe. A comparative analysis with the invertase from Saccharomyces cerevisiae, Biochem. J., 267 (1990) 697–702.
  56. P. Wong, K.Y. Chan, Agriculture, Growth and value of Chlorella salina grown on highly saline sewage effluent, Agric. Ecosyst. Environ., 30 (1990) 235–250.
  57. S. Renaud, D. Parry, L.V. Thinh, Microalgae for use in tropical aquaculture I: Gross chemical and fatty acid composition of twelve species of microalgae from the northern territory, Australia , J. Appl. Phycology, 6 (1994) 337–345.
  58. O. Colak, Z. Kaya, A study on the possibilities of biological wastewater treatment using algae, Doga Biyoloji Serisi, 12 (1988) 18–29.
  59. A. Krishnan, A.L. Neera, Wastewater treatment by algae, Int. J. Innov. Res. Sci., Eng. Technol., 21 (2013) 286–293.
  60. B. Sen, F. Sonmez, M.A.T. Kocer, M.T. Alp, O. Canpolat, Relationship of algae to water pollution and waste water treatment, Chapter 14. In Water Treatment,. W. Elshorbagy, R.K. Chowdhury Editors, InTech. Publisher, (2013) 335–354.
  61. P. Lau, N. Tam, Y. Wong, Effect of algal density on nutrient removal from primary settled wastewater, Environ. Pollut., 89 (1995) 59–66.
  62. S.A. Al-Jlil, COD and BOD reduction of domestic wastewater using activated sludge, sand filters and activated carbon in Saudi Arabia, Biotechnol., 8 (2009) 473–477.
  63. Y. Siong, J. Idris, M.M. Atabaki, Performance of activated carbon in water filters, Water Res., (2013) 1–19.
  64. J.D. Streubel, H.P. Collins, M. Garcia-Perez, J. Tarara, D. Granatstein, C.E. Kruger, Influence of contrasting biochar types on five soils at increasing rates of application, Soil Sci. Soc. Am. J., 75 (2011) 1402–1413.
  65. H. McLaughlin, P.S. Anderson, F.E. Shields, T.B. Reed, All biochars are not created equal, and how to tell them apart, Proceedings, North American Biochar Conference, Boulder, (2009).
  66. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  67. M. Berger, M. Finkbeiner, Water footprinting: How to address water use in life cycle assessment, Sustainability, 2 (2010) 919– 944.
  68. F.L. Lobo, H. Wang, T. Huggins, J. Rosenblum, K.G. Linden, Z.J. Ren, Low-energy hydraulic fracturing wastewater treatment via AC powered electrocoagulation with biochar, J. Hazard. Mater., 309 (2016) 180–184.
  69. S.K. Mohanty, A.B. Boehm, Escherichia coli removal in biochar- augmented biofilter: Effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost, Environ. Sci. Technol., 48 (2014) 11535–11542.
  70. T.M. Huggins, A. Latorre, J.C. Biffinger, Z.J. Ren, Biochar based microbial fuel cell for enhanced wastewater treatment and nutrient recovery, Sustainability, 8 (2016) 169.
  71. S.S. Dalahmeh, M. Pell, B. Vinnerås, L.D. Hylander, I. Öborn, H. Jönsson, Efficiency of bark, activated charcoal, foam and sand filters in reducing pollutants from greywater, Water Air Soil Pollut., 223 (2012) 3657–3671.
  72. C. Merz, R. Scheumann, B. El Hamouri, M. Kraume, Membrane bioreactor technology for the treatment of greywater from a sports and leisure club, Desalination, 215 (2007) 37–43.
  73. T. Melin, B. Jefferson, D. Bixio, C. Thoeye, W. De Wilde, J. De Koning, J. Van der Graaf, T. Wintgens, Membrane bioreactor technology for wastewater treatment and reuse , Desalination, 187 (2006) 271–282.
  74. S.A. Parsons, B. Jefferson: Introduction to Potable Water Treatment Processes, Wiley-Blackwell Publishing, Chichester, (2006).
  75. H.A. Moreno-Casillas, D.L. Cocke, J.A. Gomes, P. Morkovsky, J. Parga, E. Peterson, Electrochemistry behind electrocoagulation using iron electrodes, Sep. Purif. Technol., 56 (2007) 204– 211.
  76. M. Vepsäläinen, Electrocoagulation in the treatment of industrial waters and wastewaters, Thesis, VTT Technical Research Centre of Finland, (2012).
  77. N.D. Tzoupanos, A.I. Zouboulis: Water Treatment Technologies for the Removal of High-Toxicity Pollutants. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, (2009).
  78. M. Pidou, L. Avery, T. Stephenson, P. Jeffrey, S.A. Parsons, S. Liu, F.A. Memon, B. Jefferson, Chemical solutions for greywater recycling, Chemosphere, 71 (2008) 147–155.
  79. M.J. Yu, J.S. Koo, G.N. Myung, Y.K. Cho, Y.M. Cho, Evaluation of bipolar electrocoagulation applied to biofiltration for phosphorus removal, Water Sci. Technol., 51 (2005) 231–239.
  80. V. Kuokkanen, T. Kuokkanen, Recent applications of electrocoagulation in treatment of water and wastewater—a review, Green Sust. Chem., 2 (2013) 89–121.
  81. G. Lettinga, A. Van Velsen, S.W. Hobma, W. De Zeeuw, A. Klapwijk, Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment, Biotechnol. Bioeng., 22 (1980) 699–734.
  82. K. Karthikeyan, J. Kandasamy, Upflow Anaerobic Sludge Blanket (Uasb) Reactor in Wastewater Treatment, In: Water and Wastewater Treatment Technologies, Encyclopodia of Life Support Systems, ELOSS Publishers, UK, 2 (2009) 180–198.
  83. T.A. Elmitwalli, R. Otterpohl, Anaerobic biodegradability and treatment of greywater in upflow anaerobic sludge blanket (UASB) reactor, Water Res., 41 (2007) 1379–1387.
  84. E.d.A. do Couto, M.L. Calijuri, P.P. Assemany, A. da Fonseca Santiago, L.S. Lopes, Greywater treatment in airports using anaerobic filter followed by UV disinfection: an efficient and low-cost alternative, J. Clean. Prod., 106 (2015) 372–379.
  85. T. Elmitwalli, M. Shalabi, C. Wendland, R. Otterpohl, Grey water treatment in UASB reactor at ambient temperature, Water Sci. Technol., 55 (2007) 173–180.
  86. L. Hernández Leal, H. Temmink, G. Zeeman, C.J. Buisman, Improved energy recovery by anaerobic grey water sludge treatment with black water, Water, 8 (2010) 155–169.
  87. M. Tobajas, A.M. Polo, V.M. Monsalvo, A.F. Mohedano, J.J. Rodriguez, Analysis of the operating conditions in the treatment of cosmetic wastewater by sequencing batch reactors, Environ. Eng. Manag. J., 13 (2014) 2955–2962.
  88. R.L. Irvine, L.H. Ketchum Jr, T. Asano, Sequencing batch reactors for biological wastewater treatment, Crit. Rev. Env. Sci. Tec., 18 (1989) 255–294.
  89. S. Mace, J. Mata-Alvarez, Utilization of SBR technology for wastewater treatment: an overview, Ind. Eng. Chem. Res., 41 (2002) 5539–5553.
  90. V. Monsalvo, P. Shanmugam, N. Horan, Application of microbial indices to assess the performance of a sequencing batch reactor and membrane bioreactor treating municipal wastewater, Environ. Technol., 33 (2012) 2143–2148.
  91. X. Li, R. Zhang, Aerobic treatment of dairy wastewater with sequencing batch reactor systems, Bioproc. Biosystems Eng., 25 (2002) 103–109.
  92. A. Mohseni-Bandpi, H. Bazari, Biological treatment of dairy wastewater by sequencing batch reactor, J. Environ. Health Sci. Eng., 1 (2004) 65–69.
  93. S. Lin, K. Cheng, A new sequencing batch reactor for treatment of municipal sewage wastewater for agricultural reuse, Desalination, 133 (2001) 41–51.
  94. A.H. Hassimi, S.A. Siti Rozaimah, K. Siti Kartom, K. Noorhisham Tan, A review on the design criteria of biological aerated filter for COD, ammonia and manganese removal in drinking water treatment, J. Inst. Engineers Malaysia, 70 (2009) 25–33.
  95. I.E. Mousa, A full-scale biological aerated filtration system application in the treatment of paints industry wastewater, Afr. J. Biotechnol., 11 (2012) 14159.
  96. B.K. Pramanik, S. Fatihah, Z. Shahrom, E. Ahmed, Biological aerated filters (BAFs) for carbon and nitrogen removal: a review, J. Eng. Sci. Technol., 7 (2012) 428–446.
  97. F. Kargi, A. Uygur, Nutrient removal performance of a sequencing batch reactor as a function of the sludge age, Enzyme Microb. Tech., 35 (2004) 167–172.