References

  1. R.P. Singh, M. Agrawal, Potential benefits and risks of land application of sewage sludge, Waste Manage., 28 (2008) 347–358.
  2. F.Y. García Becerra, E.J. Acosta, D.G. Allen, Alkaline extraction of wastewater activated sludge biosolids, Bioresour. Technol., 101 (2010) 6972–6980.
  3. J. Vaxelaire, P. Cézac, Moisture distribution in activated sludges: a review, Water Res., 38 (2004) 2215–2230.
  4. C.C. Wu, C. Huang, D.J. Lee, Bound water content and water binding strength on sludge flocs, Water Res., 32 (1998) 900–904.
  5. M. Huo, G. Zheng, L. Zhou, Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content, Bioresour. Technol., 168 (2014) 190.
  6. M.C. Lu, C.J. Lin, C.H. Liao, R.Y. Huang, W.P. Ting, Dewatering of activated sludge by Fenton’s reagent, Adv. Environ. Res., 7 (2003) 667–670.
  7. M. Ruiz-Hernando, G. Martinez-Elorza, J. Labanda, J. Llorens, Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments, Chem. Eng. J., 230 (2013) 102–110.
  8. L. Huan, J. Yiying, R.B. Mahar, W. Zhiyu, N. Yongfeng, Effects of ultrasonic disintegration on sludge microbial activity and dewaterability, J. Hazard. Mater., 161 (2009) 1421–1426.
  9. H. Yuan, N. Zhu, F. Song, Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis, Bioresour. Technol., 102 (2011) 2308.
  10. G.P. Sheng, H.Q. Yu, X.Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28 (2010) 882.
  11. E. Neyens, J. Baeyens, R. Dewil, h.B. De, Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering, J. Hazard. Mater., 106 (2004) 83–92.
  12. D. Xin, X. Chai, W. Zhao, Hybrid cement-assisted dewatering, solidification and stabilization of sewage sludge with high organic content. J. Mater. Cycles Waste Manage., 18 (2016) 356– 365.
  13. L. Yu, Y. Yu, W. Jiang , H. Wei, C. Sun, Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production. Environ. Sci. Pollut. Res., 22 (2015) 2599–2609.
  14. C.Y. Chen, P.Y. Zhang, G.M. Zeng, J.H. Deng, Y. Zhou, H.F. Lu, Sewage sludge conditioning with coal fly ash modified by sulfuric acid, Chem. Eng. J., 158 (2010) 616–622.
  15. V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud--an aluminium industry waste, Water Res., 35 (2001) 1125–1134.
  16. P. Kounalakis, K. Aravossis, C. Karayianni, Feasibility study for an innovative industrial red mud utilisation method, Waste Manage. Res., 34 (2016) 171.
  17. J. Yang, B. Xiao, Development of unsintered construction materials from red mud wastes produced in the sintering alumina process, Constr. Build. Mater., 22 (2008) 2299–2307.
  18. W. Liu, X. Chen, W. Li, Y. Yu, K. Yan, Environmental assessment, management and utilization of red mud in China, J. Clean. Prod., 84 (2014) 606–610.
  19. H. Gu, N. Wang, S. Liu, Radiological restrictions of using red mud as building material additive, Waste Manage. Res., 30 (2012) 961.
  20. Y.J. Liu, R. Naidu, M. Hui, Red mud as an amendment for pollutants in solid and liquid phases, Geoderma., 163 (2011) 1–12.
  21. S. Agatzini-Leonardou, P. Oustadakis, P.E. Tsakiridis, C. Markopoulos, Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure, J. Hazard. Mater., 157 (2008) 579–586.
  22. H. Zhang, J. Yang, W. Yu, S. Luo, L. Peng, X. Shen, Y. Shi, S. Zhang, J. Song, N. Ye, Mechanism of red mud combined with Fenton’s reagent in sewage sludge conditioning, Water Res., 59 (2014) 239–247.
  23. P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, C. Koroneos, Utilization of steel slag for portland cement clinker production. J. Hazard. Mater., 152 (2008) 805–11.
  24. A. Altun, I. Yılmaz, Study on steel furnace slags with high MgO as additive in Portland cement, Cem. Concr. Res., 32 (2002) 1247–1249.
  25. H. Motz, J. Geiseler, Products of steel slags an opportunity to save natural resources, Waste Manage., 21 (2001) 285–293.
  26. D. Li, X. Fu, X. Wu, M. Tang, Durability study of steel slag cement. Cem. Concr. Res., 27 (1997) 983–987.
  27. M. Tuefekci, A. Demirbas, Evaluation of steel furnace slags as cement additives, Cem. Concr. Res., 27 (1997) 1713–1717.
  28. G. Qian, D.D. Sun, J.H. Tay, Z. Lai, G. Xu, Autoclave properties of kirschsteinite-based steel slag. Cem. Concr. Res., 32 (2002) 1377–1382.
  29. A. Monshi, M.K. Asgarani, Producing Portland cement from iron and steel slags and limestone, Cem. Concr. Res., 29 (1999) 1373–1377.
  30. J. Vaxelaire, J. Olivier, Conditioning for Municipal Sludge Dewatering. From Filtration Compression Cell Tests to Belt Press, Dry. Technol., 24 (2006) 1225–1233.
  31. M. Raynaud, J. Vaxelaire, P. Heritier, J.C. Baudez, Activated sludge dewatering in a filtration compression cell: deviations in comparison to the classical theory, Asia-Pac. J. Chem. Eng., 5 (2010) 785–790.
  32. B. Frølund, T. Griebe, P.H. Nielsen, Enzymatic activity in the activated-sludge floc matrix, Appl. Microbiol. Biotechnol., 43 (1995) 755.
  33. T.L. Poxon, J.L. Darby, Extracellular polyanions in digested sludge: Measurement and relationship to sludge dewaterability, Water Res., 31 (1997) 749–758.
  34. Y. Qiang, H.Y. Lei, G.W. Yu, F. Xin, Z.X. Li, Z.C. Wu, Influence of microwave irradiation on sludge dewaterability, Chem. Eng. J., 155 (2009) 88–93.
  35. X.Y. Li, S.F. Yang, Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge, Water Res., 41 (2007) 1022–1030.
  36. Z. Xu, W. Qilin, J. Guangming, L. Peng, Y. Zhiguo, A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate, Bioresour. Technol., 185 (2015) 416.
  37. G.P. Sheng, H.Q. Yu, Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy, Water Res., 40 (2006) 1233.
  38. V. Urbain, J.C. Block, J. Manem, Bioflocculation in activated sludge: an analytic approach, Water Res., 27 (2011) 829–838.
  39. W. Zhang, P. Xiao, Y. Liu, S. Xu, F. Xiao, D. Wang, C.W.K. Chow, Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability, Sep. Purif. Technol., 132 (2014) 430–437.
  40. M. Niu, W. Zhang, D. Wang, Y. Chen, R. Chen, Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants, Bioresour. Technol., 144 (2013) 337.
  41. G. Zhen, X. Lu, Y. Zhao, X. Chai, D. Niu, Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation, Bioresour. Technol., 116 (2012) 259.
  42. T. Liu, Z.L. Chen, W.Z. Yu, S.J. You, Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy, Water Res., 45 (2011) 2111–2121.
  43. R. Artinger, G. Buckau, S. Geyer, P. Fritz, M. Wolf, J.I. Kim, Characterization of groundwater humic substances: influence of sedimentary organic carbon, Appl. Geochem., 15 (2000) 97–116.
  44. Z.W. Wang, Z.C. Wu, S.J. Tang, Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy, Water Res., 43 (2009) 1533–1540.
  45. G. Zhen, X. Lu, Y. Li, Y. Zhao, B. Wang, Y. Song, X. Chai, D. Niu, X. Cao, Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation, Bioresour. Technol., 119 (2012) 7.
  46. P.G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem., 51 (1996) 325–346.