References

  1. T. Humplik, J. Lee, S.C. O’hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanostructured materials for water desalination, Nanotechnology, 22 (2011) 292001.
  2. F.A. Al Marzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review, Desalination, 342 (2014) 3–15.
  3. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electro chim. Acta, 55 (2010) 3845–3856.
  4. C. Feng, C.C. Tsai, C.Y. Ma, C.P. Yu, C.H. Hou, Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment, Chem. Eng. J., 330 (2017) 1–10.
  5. M.E. Suss, V. Presser, Water desalination with energy storage electrode materials, Joule, 2 (2018) 10–15.
  6. C. Zhao, G. Liu, N. Sun, X. Zhang, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization, Chem. Eng. J., 334 (2018) 1270–1280.
  7. M. Andelman, Non-fouling flow through capacitor system, US Pat., (1998) 5779891-A.
  8. L. Pan, X. Wang, Y. Gao, Y. Zhang, Y. Chen, Z. Sun, Electro sorption of anions with carbon nanotube and nanofibre composite film electrodes, Desalination, 244 (2009)139–143.
  9. L. Liu, G. Qiu, S.L. Suib, F. Liu, L. Zheng, W. Tan, L. Qin, Enhancement of Zn2+ and Ni2+ removal performance using a deionization pseudo capacitor with nanostructured birnessite and its carbon nanotube composite electrodes, Chem. Eng. J., 328 (2017) 464–473.
  10. C.J. Yan, L.D. Zou, R. Short, Polyaniline-modified activated carbon electrodes for capacitive deionization, Desalination, 333 (2014) 101–106.
  11. M. Zafra, P. Lavela, G. Rasines, C. Macias, J. Tirado, C. Ania, A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water, Electrochim. Acta, 135 (2014) 208–216.
  12. P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42 (2008) 2605–2617.
  13. Q. Dong, G. Wang, B. Qian, C. Hu, Y. Wang, J.Qiu, Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization, Electrochim. Acta, 137 (2014) 388–394.
  14. C. Yan, L. Zou, R. Short, Single-walled carbon nanotubes and polyaniline composites for capacitive deionization, Desalination, 290 (2012) 125–129.
  15. G. Luo, H. Li, D. Zhang, L. Gao, T. Lin, A template-free synthesis via alkaline route for Nb2O5/carbon nanotubes composite as pseudo-capacitor material with high-rate performance, Electro Chim. Acta, 235 (2017) 175–181.
  16. H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, J. Mater. Chem. A., 2 (2014) 4739.
  17. C. Yan, Y.W. Kanaththage, R. Short, C.T. Gibson, L. Zou, Graphene/polyaniline nanocomposite as electrode material for membrane capacitive deionization, Desalination, 344 (2014) 274–279.
  18. X. Li, Y. Chen, A. Kumar, A. Mahmoud, J.A. Nychka, H.J. Chung, Sponge-templated macroporous graphene network for piezoelectric ZnO nanogenerator, ACS Appl. Mater. Inter., 7 (2015) 20753–20760.
  19. G.X. Li, P.X. Hou, S.Y. Zhao, C. Liu, H.M. Cheng, A flexible cotton-derived carbon sponge for high-performance capacitive deionization, Carbon, 101 (2016) 1–8.
  20. X. Xu, Z. Sun, D.H.C. Chua, L. Pan, Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance, Sci. Rep., 5 (2015) 11225.
  21. Z.Y. Yang, L.J. Jin, G.Q. Lu, Q.Q. Xiao, Y.X. Zhang, L. Jing, X.X. Zhang, Y.M. Yan, K.N. Sun, Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance, Adv. Funct. Mater., 24 (2014) 3917–3925.
  22. Z. Tai, X. Yan, J. Lang, Q. Xue, Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets, J. Power Sources, 199 (2012) 373–378.
  23. G. Luo, Y. Wang, L. Gao, D. Zhang, T. Lin, Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability, Electrochim. Acta, 260 (2018) 656–663.
  24. J. Liu, S. Wang, J. Yang, J. Liao, M. Lu, H. Pan, L. An, ZnCl2 activated electro spun carbon nanofiber for capacitive desalination, Desalination, 344 (2014) 446–453.
  25. H. Pan, J. Yang, S. Wang, Z. Xiong, W. Cai, J. Liu, Facile fabrication of porous carbon nanofibers by electro spun PAN/dimethyl sulfone for capacitive deionization, J. Mater. Chem. A., 3 (2015) 13827–13834.
  26. F. Lai, Y. Huang, L. Zuo, H. Gu, Y. E. Miao, T. Liu, Electro spun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric super capacitors, J. Mater. Chem. A., 4 (2016) 15861–15869.
  27. S. Porada, L. Weinstein, R. Dash, A. Van Der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with micro porous carbon electrodes, ACS Appl. Mater. Inter., 4 (2012) 1194–1199.
  28. Y. Liu, T. Lu, Z. Sun, D.H.C. Chua, L. Pan, Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization, J. Mater. Chem. A., 3 (2015) 8693–8700.
  29. G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, J. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electro spinning for capacitive deionization, J. Mater. Chem., 22 (2012) 21819–21823.
  30. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, J. Mater. Chem., 22 (2012) 14696–14704.
  31. Z. Peng, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization, Appl. Surf. Sci., 282 (2013) 965–973.
  32. J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, Synthesis and electrochemical performance of MnO2/CNTs–embedded carbon nanofibers nanocomposites for super capacitors, Electro chim. Acta, 75 (2012) 213–219.
  33. A.G. El-Deen, R.M. Boom, H.Y. Kim, H. Duan, M.B. Chan-Park, J.H. Choi, Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization, ACS Appl. Mater. Inter., 8 (2016) 25313–25325.
  34. H. Li, S. Liang, J. Li, L. He, The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite, J. Mater. Chem. A., 1 (2013) 6335–6341.
  35. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it? Energ. Environ. Sci., 8 (2015) 2296–2319.
  36. A.E. Rodrigues, C.M. Silva, What’s wrong with Lager green pseudo first order model for adsorption kinetics? Chem. Eng. J., 306 (2016) 1138–1142.
  37. Y.J. Kim, J.H. Choi, Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 71 (2010) 70–75.
  38. G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, J. Qiu, Activated carbon nanofiber webs made by electro spinning for capacitive deionization, Electro chim. Acta, 69 (2012) 65–70.
  39. Q. Dong, G. Wang, T. Wu, S. Peng, J. Qiu, Enhancing capacitive deionization performance of electro spun activated carbon nanofibers by coupling with carbon nanotubes, J. Colloid Interface Sci., 446 (2015) 387–392.
  40. G. Wang, Q. Dong, T. Wu, F. Zhan, M. Zhou, J. Qiu. Ultra sound-assisted preparation of electro spun carbon fiber/graphene electrodes for capacitive deionization: Importance and unique role of electrical conductivity, Carbon, 103 (2016) 311–317.
  41. G. Wang, B. Qian, Y. Wang, Q. Dong, F. Zhan, J. Qiu, Electrospun porous hierarchical carbon nanofibers with tailored structures for super capacitors and capacitive deionization, New J. Chem., 40 (2016) 3786–3792.