References

  1. A. Matilainen, E.T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar, M. Sillanpää, An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment, Chemosphere, 83(11) (2011) 1431–1442.
  2. H. Knapik, C.S. Fernandes, J. de, Azevedo, M. dos, Santos, Dall’P. Agnol, D. Fontane, Biodegradability of anthropogenic organic matter in polluted rivers using fluorescence, UV, and BDOC measurements, Environ Monit Assess, 187(3) (2015) 1–15.
  3. T. Pagano, M. Bida, J.E. Kenny, Trends in levels of allochthonous dissolved organic carbon in natural water: a review of potential mechanisms under a changing climate, Water, 6(10) (2014) 2862–2897.
  4. C. Kendall, E.A. Caldwell, Fundamentals of isotope geochemistry, Isotope tracers in catchment hydrology, (1998) 51–86.
  5. T.M. Hall, T.W. Haine, D.W. Waugh, Inferring the concentration of anthropogenic carbon in the ocean from tracers, Global Biogeochem Cycles, 16(4) (2002) .
  6. H.K. Park, M.S. Byeon, Y.N. Shin, D.I. Jung, Sources and spatial and temporal characteristics of organic carbon in two large reservoirs with contrasting hydrologic characteristics, Water Resour Res., 45(11) (2009) .
  7. R.A. Al-Juboori, T. Yusaf, Biofouling in RO system: Mechanisms, monitoring and controlling, Desalination, 302 (2012) 1–23.
  8. R.A. Al-Juboori, T. Yusaf, V. Aravinthan, P.A. Pittaway, L. Bowtell, Investigating the feasibility and the optimal location of pulsed ultrasound in surface water treatment schemes, Desal. Water Treat., (2015) 1–19.
  9. P.R. Gogate, Application of cavitational reactors for water disinfection: Current status and path forward, J. Environ. Manage., 85(4) (2007) 801–815.
  10. R.A. Al-Juboori, T. Yusaf, L. Bowtell, V. Aravinthan, Energy characterisation of ultrasonic systems for industrial processes, Ultrasonics, 57 (2015) 18–30.
  11. A. Hulsmans, K. Joris, N. Lambert, H. Rediers, P. Declerck, Y. Delaedt, F. Ollevier, S. Liers, Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system, Ultrason. Sonochem., 17(6) (2010) 1004–1009.
  12. E. Naffrechoux, S. Chanoux, C. Petrier, J. Suptil, Sonochemical and photochemical oxidation of organic matter, Ultrason. Sonochem., 7(4) (2000) 255–259.
  13. D.W. Hendricks, Water treatment unit processes: Physical and Chemical. 2006: Taylor & Francis.
  14. R.A. Al-Juboori, T. Yusaf, V. Aravinthan, L. Bowtell, Investigating natural organic carbon removal and structural alteration induced by pulsed ultrasound, Sci. Total Environ., 541 (2016) 1019–1030.
  15. L.S. Clesceri, E.W. Rice, A.E. Greenberg, A.D. Eaton, eds. Standard methods for examination of water and wastewater. 21st ed. 2005, American Public Health Association.
  16. T.R. Crompton, Chromatography of Natural, Treated and Waste Waters. 2003: CRC Press.
  17. N. Stuckey, P. Pittaway, K. Larsen, Photo degradation of Australian freshwater micro layers and the implications for potable water management, in 2nd Urban Water Security Research Alliance Science Forum and Stakeholder Engagement, D.K. Begbie S.L. Wakem, eds., 2010, CSIRO Publishing: Brisbane, Australia. pp. 50–51.
  18. T. Chao, L.Y.Y. Yongguang, C.Y.J. Guibin, Free radical photochemistry of dissolved organic matter in natural water, Progr. Chem., 24(7) (2012) 1388–1397.
  19. R.A. Al-Juboori, T. Yusaf, L. Bowtell, Energy conversion efficiency of pulsed ultrasound, Energy Procedia., 75 (2015) 1560–1568.
  20. H.H. Rump, H. Krist, Laboratory Manual for the Examination of Water, Waste Water and Soil. 1988: VCH Verlagsgesellschaft mbh.
  21. V. Naddeo, V. Belgiorno, R. Napoli, Behaviour of natural organic mater during ultrasonic irradiation, Desalination, 210 (2007) 175–182.
  22. M.M. Bob, H.W. Walker, Effect of natural organic coatings on the polymer-induced coagulation of colloidal particles, Colloids Surf. A Physicochem. Eng. Asp., 177(2–3) (2001) 215–222.
  23. A.U. Ramunni, F. Palmieri, Use of ultrasonic treatment for extraction of humic acid with inorganic reagents from soil, Org. Geochem., 8(4) (1985) 241–246.
  24. J. Gregory, Particles in Water: Properties and Processes. 2005: CRC Press.
  25. R.L. Wershaw, Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humification. 2004, US Department of the Interior, US Geological Survey.
  26. G.E. Orzechowska, E.J. Poziomek, Potential use of ultrasound in chemical monitoring. 1994, Environmental Monitoring Systems Laboratory-Las Vegas, Office of Research and Development, U.S. Environmental Protection Agency: Las Vegas, Nevada.
  27. S. Wang, R. Feng, X. Mo, Study on ‘pulse cavitation peak’ in an ultrasound reverberating field, Ultrason. Sonochem., 3(1) (1996) 65–68.
  28. L. Stepniak, U. Kepa, E. Stanczyk-Mazanek, Influence of a high-intensity ultrasonic field on the removal of natural organic compounds from water, Desal. Water Treat., 5 (2009) 29–33.
  29. Y. Nagata, K. Hirai, H. Bandow, Y. Maeda, Decomposition of hydroxybenzoic and humic acids in water by ultrasonic irradiation, Environ. Sci. Technol., 30(4) (1996) 1133–1138.
  30. G.J. Price, E.J. Lenz, C.W.G. Ansell, The effect of high-intensity ultrasound on the ring-opening polymerisation of cyclic lactones, Eur. Polym. J., 38(9) (2002) 1753–1760.
  31. M. Nyström, K. Ruohomäki, L. Kaipia, Humic acid as a fouling agent in filtration, Desalination, 106 (1996) 79–87.
  32. S. Valencia, J.M. Marín, G. Restrepo, F.H. Frimmel, Application of excitation–emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid, Sci. Total Environ., 442 (2013) 207–214.
  33. P.A. Pittaway, T.R. van den Ancker, Properties of natural micro layers on Australian freshwater storages and their potential to interact with artificial mono layers, Mar. Freshwater Res., 61(10) (2010) 1083–1091.
  34. R. Suresh, L. Hiremath, G.V. Kumar, Application of ultrasound and microbial treatment for biomass effluent, J. Appl. Sci. Environ. Sanit., 6(1) 63–68.
  35. M.A. El-Shafy, A. Grünwald, THM formation in water supply in South Bohemia, Czech Republic. Water Res., 34(13) (2000) 3453–3459.
  36. R.P.S. Suri, T.S. Singh, S. Abburi, Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution, Environ. Sci. Technol., 44(4) (2010) 1373–1379.
  37. D.J. Casadonte Jr., M. Flores, C. Petrier, Enhancing sonochemical activity in aqueous media using power-modulated pulsed ultrasound: an initial study, Ultrason. Sonochem., 12(3) (2005) 147–152.
  38. USEPA, Enhanced coagulation and enhanced precipitative softening guidance manual (815-R-99–012), in Disinfectants and Disinfection Byproducts Rule (DBPR). 1999, USEPA, Office of Water.
  39. R.Y. Adedapo, Disinfection By-Product Formation in Drinking Water Treated with Chlorine Following UV Photolysis & UV/H2O2, in Civil Engineering 2005, University of Waterloo, Ontario, Canada.
  40. M. Hocking, K. Klimchuk, S. Lowen, Polymeric Flocculants and Flocculation, 1999.
  41. P.J. Vikesland, K. Ozekin, R.L. Valentine, Monochloramine decay in model and distribution system waters, Water Res., 35(7) (2001) 1766–1776.
  42. D. Chen, Z. He, L.K. Weavers, Y.-P. Chin, H.W. Walker, P.G. Hatcher, Sonochemical reactions of dissolved organic matter, Res. Chem. Intermed., 30(7) (2004) 735–753.
  43. A. Henglein, M. Gutierrez, Chemical effects of continuous and pulsed ultrasound: a comparative study of polymer degradation and iodide oxidation, J. Phys. Chem., 94(12) (1990) 5169–5172.
  44. T.J. Battin, Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela. Org. Geochem., 28(9–10) (1998) 561–569.
  45. National Institute of Standards and Technology. Phenol-NIST Webbook. 2016; Available from: http://webbook.nist.gov/cgi/book.cgi?ID=C108952&Mask=480.
  46. F. Mijangos, F. Varona, N. Villota, Changes in solution color during phenol oxidation by Fenton reagent, Environ. Sci. Technol., 40(17) (2006) 5538–5543.
  47. T.K. Nissinen, I.T. Miettinen, P.J. Martikainen, T. Vartiainen, Molecular size distribution of natural organic matter in raw and drinking waters, Chemosphere, 45(6–7) (2001) 865–873.
  48. N.G. Pizzi, Water Treatment: Principles and Practices of Water Supply Operations Series 2011, Denver: American Water Works Association.
  49. G.V. Korshin, C.-W. Li, M.M. Benjamin, Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory, Water Res., 31(7) (1997) 1787–1795.
  50. R. Fabris, E.K. Lee, C.W.K. Chow, V. Chen, M. Drikas, Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes, J. Membr. Sci., 289 (2007) 231–240.
  51. S. Valencia, J. Marín, J. Velásquez, G. Restrepo, F.H. Frimmel, Study of pH effects on the evolution of properties of brown-water natural organic matter as revealed by size-exclusion chromatography during photocatalytic degradation, Water Res., 46(4) (2012) 1198–1206.
  52. J.E. Smith, R.C. Renner, B.A. Hegg, J.H. Bender, Upgrading existing or designing new drinking water treatment facilities. 1991, US Environmental Protection Agency: Noyes Data Corporation, Park Ridge, NJ.
  53. Origin-Australia. Business energy price fact sheets. 2017 [cited 2017; Available from: https://www.originenergy.com.au/forhome/electricity-and-gas/pricing/energy-price-fact-sheets.html.