References
- G. Busca, Technologies for the removal of phenol from fluid
streams, a short review of recent developments, J. Hazard.
Mater., 160 (2008) 265–288.
- D. Pokhrel, T. Viraraghavan, Treatment of pulp and paper mill
wastewater, a review, Sci. Total Environ., 333 (2004) 37–58.
- A. Haritash, C. Kaushik, Biodegradation aspects of polycyclic
aromatic hydrocarbons (PAHs), a review, J. Hazard. Mater., 169
(2009) 1–15.
- S.A. Snyder., S. Adham., A.M. Redding., F.S. Cannonc., J.
DeCarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes
and activated carbon in the removal of endocrine disruptors
and pharmaceuticals, Desalination, 202 (2007) 156–181.
- N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, The effects of
emerging contaminants in wastewater and options for their
removal, A review, Desalination, 239 (2009) 229–246.
- W.W. Ngah, M. Hanafiah, Removal of heavy metal ions from
wastewater by chemically modified plant wastes as adsorbents,
a review, Biores. Tech., 99 (2008) 3935–3948.
- S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian: A review of
potentially low-cost sorbenls for heavy metals, Water Res., 33
(1999) 2469–2479.
- N. NHMRC, Australian drinking water guidelines paper
6 national water quality management strategy, National
Health and Medical Research Council, National Resource
Management Ministerial Council, Commonwealth of Australia,
Canberra, 2004.
- F. Su, C. Lu, Adsorption kinetics, thermodynamics, and
desorption of natural dissolved organic matter by multiwall
carbon nanotubes, Environ. Sci. Health A., 42 (2007) 1543–1552.
- W. Cheng, S.A. Dastgheib, T. Karanfil, Adsorption of dissolved
natural organic matter by modified activated carbons, Water
Res., 39 (2005) 2281–2290.
- R.C. Hoehn, BW. Long, Toxic cyanobacteria (blue green algae):
an emerging concern. In: Envirologix, editor. Natural Water
Toxins. 2008. Envirologix, Portland, 1999.
- J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu, Heavy
metal pollution and human biotoxic effects, Phys. Sci., 2 (2007)
112–118.
- V.K.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith,
Application of carbon nanotube technology for removal of contaminants
in drinking water, Sci. Total Environ., 408 (2009) 1–13.
- J.G. Yu, X.H. Zhao, L.Y. Yu, F.P. Jiao, J.H. Jiang, X.Q. Chen,
Removal, recovery and enrichment of metals from aqueous
solutions using carbon nanotubes, Radioanal. Nucl. Chem.,
299 (2014) 1155–1163.
- N. Mubarak, J. Sahu, E. Abdullah, N. Jayakumar, Removal of
heavy metals from wastewater using carbon nanotubes, Sep.
Purif. Rev., 43 (2014) 311–338.
- X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as
adsorbents in environmental pollution management, a review,
Chem. Eng. J., 170 (2011) 395–410.
- D.Y. Lyon, D.A. Brown and P.J.J. Alvarez., Implications and
potential applications of actericidal fullerene water suspen
sions: effect of nC60 concentration, exposure conditions and
shelf life, Water Sci. Tech., 57 (2008) 1533–1538.
- H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley,
C60: Buckminster-fullerene, Nature, 318 (1985) 162–163.
- S. Iijima, Helical microtubules of graphitic carbon, Nature, 354
(1991) 56–58.
- A. Hirsch, C. Bellavia-Lund, Fullerenes and Related Structures,
(A. Hirsch Ed.). Berlin: Springer, 1999.
- L.Y. Chiang, J.W. Swirczewski, C.S. Hsu, S.K. Chowdhury, S.
Cameron, Multi-hydroxy additions onto C60 fullerene molecules,
Chem. Comm., 24 (1992) 1791–1793.
- L.Y. Chiang, R.B. Upasani, J.W. Swirezewski, S. Soled, Evidence
of hemiketals incorporated in the structure of fullerols derived
from aqueous acid chemistry, J. Am. Chem. Soc., 115 (1993)
5453–5457.
- J. Li, A. Takeuchi, M. Ozawa, XH. Li, K. Saigo, K. Kitazawa,
C60 fullerol formation catalysed by quaternary ammonium
hydroxides, Chem. Comm., 23 (1993) 1784–1785.
- S. Wang, P. He, J. Yhang, H. Jiang, S. Zhu, Novel and efficient
synthesis of water-soluble 60 fullerenol by solvent-free reaction,
Syn. Comm., 35 (2005) 1803–1808.
- G. Zhang, Y. Liu, D. Liang, L. Gan, Y. Li, Facile synthesis of isomerically
pure fullerenols and formation of spherical aggregates
from C60(OH)8, Angewandte Chemie Int. Ed., 49 (2010)
5293–5295.
- K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T.
Oshima, Facile synthesis of highly water-soluble fullerenes
more than half-covered by hydroxyl groups, ACS Nano, 2
(2008) 327–333.
- H. Paloniemi, T. Aaritalo, T. Laiho, H. Liuke, N. Kocharova,
K. Haapakka, F. Terzi, R. Seeber, J. Lukkari, Water-soluble
full-length single-wall carbon nanotube polyelectrolytes:
preparation and characterization, J. Phys. Chem. B, 109 (2005)
8634–8642.
- N. Hu, G. Dang, H. Zhou, J. Jing, C. Chen, Efficient direct water
dispersion of multi-walled carbon nanotubes by functionalization
with lysine, Mater. Lett., 61 (2007) 5285–5287.
- X.F. Zhang, T.V. Sreekumar, T. Liu, S. Kumar, Properties and
structure of nitric acid oxidized single wall carbon nanotube
films, J. Phys. Chem. B, 108 (2004) 16435–16440.
- A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J.
Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert,
R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley,
Large-scale purification of single-wall carbon nanotubes: process,
product, and characterization, App. Phys. Mat. Sci. Proc.,
67 (1998) 29–37.
- Q. Liao, J. Sun, L. Gao, Adsorption of chlorophenols by multiwalled
carbon nanotubes treated with HNO3 and NH3, Carbon.,
46 (2008) 553–555.
- S. Zhang, T. Shado, S.S. Bekaroglu, T. Karanfil, The impacts
of aggregation and surface chemistry of carbon nanotubes on
the adsorption of synthetic organic compound, Environ. Sci.
Technol., 43 (2009) 5719–5725.
- N. Martin, J.F. Nierengarten, Supramolecular chemistry of
fullerenes and carbon nanotubes, G. Francesco, A. Herranz,
M. Nazario, Carbon Nanostructures: Covalent and Macromolecular
Chemistry, Wiley–VCH, Germany, 2012.
- B.W. Smith, M. Monyhious and D.D. Luzzi, Encapsulated C60
in carbon nanotubes, Nature., 396 (1998) 323–324.
- A.B. Bourlinos, V. Georgakilas, A. Bakandritsos, A. Kouloumpis,
D. Gournis, R. Zbori, Aqueous-dispersible fullerol-carbon
nanotube hybrids, Mater. Lett., 82 (2012) 48–50.
- VK. padhyayula, S. Deng, MC. Mitchell, GB. Smith, Application
of carbon nanotube echnology for removal of ontaminants
in drinking water, a review, Sci. Total Environ., 408
(2009) 1–13.
- M.E. Milanesio, M.B. Spesia, M.P. Cormick, E.N. Durantini,
Mechanistic studies on the photodynamic effect induced by
a dicationic fullerene C60 derivative on Escherichia coli and
Candida albicanscells, Photodiagn. Photodyn. Therapy, 10
(2013) 320–327.
- X. Tao, Y. Yu, J.D. Fortner, Y. He, Y. Chen, J.B. Hughes, Effects of
aqueous stable fullerene nanocrystal (nC60) on Scenedesmusobliquus,
Chemosphere, 122 (2014) 162–167.
- B. Fugetsu, S. Satoh, T. Shiba, T. Mizutani, Y.B. Lin, N. Terui,
Y. Nodasaka, K. Sasa., K. Shimizu, T. Akasaka, Caged multiwall
carbon nanotubes as the adsorbents for affinity-based
elimination of ionic dyes, Env. Sci. Technol., 38 (2004) 6890–6896.
- X.J. Peng, Y.H. Li, Z.K. Luan, Z.C. Di, H.Y. Wang, B.H. Tian, Z.P.
Jia, Adsorption of 1,2-dichlorobenzene from water to carbon
nanotubes, Chem. Phys., 376 (2003) 154–158.
- M. Calvaresi, F. Zerbetto, The devil and holy water: protein
and carbon nanotube hybrids, Acc. Chem. Res., 46 (2013)
2454–2463.
- Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H. Wu,
B.Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+
ions from aqueous solutions by multiwall carbon nanotubes,
Carbon, 41 (2003) 2787–2792.
- Q. Liu, Q. Cui, X. J. Li, L. Jin, The applications of buckminsterfullerene
C60 and derivatives in orthopaedic research, Connect
Tissue Res., 55(2014) 71–79.
- D.Y. Lyon, D.A. Brown, P.J.J. Alvarez., Implications and potential
applications of actericidal fullerene water suspensions:
effect of nC60 concentration, exposure conditions and shelf
life, Water Sci. Tech., 57 (2007) 1533–1538.
- D.D. Amarendra, P.D. Shashi, G. Krishna, S. Mika, Strengthening
adsorptive amelioration: Isotherm modeling in liquid
phase surface complexation of Pb(II) and Cd(II) ions, Desalination,
267 (2010) 25–33.
- S. Lagergren, About the theory of so called adsorption of solute
substances, Ksver Veterskapsakad Handl., 24 (1898) 1–6.
- Y.S. Ho, G. McKay, The sorption of lead (II) ions on peat, Water
Res., 33 (1999) 578–584.
- T.W. Weber, R.K. Chatravorti, Pore and solid diffusion models
for fixed bed adsorbers, Am. Inst. Chem. Eng., 20 (1974) 228–238.
- AG. Ritchie, Alternative to elovich equation for kinetics of
adsorption of gases on solids. Chem. Soc., Faraday Trans., 73
(1977) 1650–1653.
- Y.S. Ho, G. McKay, Competitive sorption of copper and nickel
ions from aqueous solution using peat, Adsorption, 5 (1999a)
409–417.
- R. Prabakaran, S. Arivoli, Biosorption of Ferrous Ion from Aqueous
Solutions by using Activated carbon prepared from Thespesia
Populnea Bark, Arch. Appl. Sci. Res., 3 (2011) 218–232.
- H.M.F. Freundlich, Over the adsorption in solution, Phys.
Chem., 57(1906) 385–471.
- M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic
curve of the activated charcoal, Proc. Acad. Sci. USSR
Phys. Chem. Sect., 55 (1947) 331–337.
- W. Rondon, D. Freire, Z. de Benzo, A.B. Sifontes, Y. González,
M. Valero, J.L. Brito, Application of 3A zeolite prepared from
venezuelan kaolin for removal of Pb(II) from wastewater and
its determination by flame atomic absorption spectrometry,
Am. J. Anal. Chem., 4 (2013) 584–593.
- H. Chen, J. Zhao, G. Dai, J. Wu, H. Yan., Desorption characteristics
of Pb(II) from aqueous solution onto a natural biosorbent,
Fallen Cinnamomum camphora leaves, Desalination,
262 (2010) 174–182.
- S.N. Dash, R. Murthy, Preparation of carbonaceous heavy
metal adsorbent from Shorea robusta leaf litter using phosphoric
acid impregnation, Env. Sci., 1 (2010) 296–313.
- M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-fard,
Adsorption of Pb(II) from aqueous solution using new adsorbents
prepared from agricultural waste: Adsorption isotherm
and kinetic studies, Ind. Eng. Chem., 20 (2014) 2193–2199.
- M. Naushad, Surfactant assisted nano-composite cation
exchanger: Development, characterization and applications
for the removal of toxic Pb2+ from aqueous medium, Chem.
Eng., 235 (2014) 100–108.
- M. Naushad, Z.A. ALOthman, M. Rabiul Awual, M.M. Alam,
G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic
studies for the adsorption of Pb2+ and Hg2+ metal
ions from aqueous medium using Ti(IV) iodovanadate cation
exchanger, Ionics, 21 (2015) 2237–2245.
- M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-fard, A
novel agricultural waste based adsorbent for the removal of
Pb(II) from aqueous solution: Kinetics equilibrium and thermodynamic
study, Ind. Eng. Chem., 20 (2014) 454–461.
- A. Mittal, M. Naushad, G. Sharma, Z.A. ALOthman, S.M.
Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite
and its adsorption behavior for the removal of Pb(II)
metal from aqueous medium, Desal. Water Treat., 57 (2016)
21863–21869.
- R. Bushra, M. Naushad, R. Adnan, M.N.M. brahima, M. Rafatullah,
Polyaniline supported nanocomposite cation exchanger:
Synthesis, characterization and applications for the efficient
removal of Pb2+ ion from aqueous medium, Ind. Eng. Chem., 21
(2015) 1112–1118.
- Y. Guthaa, V.S. Munagapati, M. Naushadc and K. Abbur.,
Removal of Ni(II) from aqueous solution by Lycopersicum
esculentum (tomato) leaf powder as a low-cost biosorbent,
Desal. Water Treat., 54 (2015) 200–208.
- A.N. Siyal, S.Q. Memon, M.I. Khaskheli, Optimization and
equilibrium studies of Pb(II) removal by Grewia Asiatica seed:
a factorial design approach, Polish J. Chem. Technol., 14 (2012)
71–77.