References

  1. G. Busca, Technologies for the removal of phenol from fluid streams, a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  2. D. Pokhrel, T. Viraraghavan, Treatment of pulp and paper mill wastewater, a review, Sci. Total Environ., 333 (2004) 37–58.
  3. A. Haritash, C. Kaushik, Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs), a review, J. Hazard. Mater., 169 (2009) 1–15.
  4. S.A. Snyder., S. Adham., A.M. Redding., F.S. Cannonc., J. DeCarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination, 202 (2007) 156–181.
  5. N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, The effects of emerging contaminants in wastewater and options for their removal, A review, Desalination, 239 (2009) 229–246.
  6. W.W. Ngah, M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents, a review, Biores. Tech., 99 (2008) 3935–3948.
  7. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian: A review of potentially low-cost sorbenls for heavy metals, Water Res., 33 (1999) 2469–2479.
  8. N. NHMRC, Australian drinking water guidelines paper 6 national water quality management strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, 2004.
  9. F. Su, C. Lu, Adsorption kinetics, thermodynamics, and desorption of natural dissolved organic matter by multiwall carbon nanotubes, Environ. Sci. Health A., 42 (2007) 1543–1552.
  10. W. Cheng, S.A. Dastgheib, T. Karanfil, Adsorption of dissolved natural organic matter by modified activated carbons, Water Res., 39 (2005) 2281–2290.
  11. R.C. Hoehn, BW. Long, Toxic cyanobacteria (blue green algae): an emerging concern. In: Envirologix, editor. Natural Water Toxins. 2008. Envirologix, Portland, 1999.
  12. J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu, Heavy metal pollution and human biotoxic effects, Phys. Sci., 2 (2007) 112–118.
  13. V.K.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water, Sci. Total Environ., 408 (2009) 1–13.
  14. J.G. Yu, X.H. Zhao, L.Y. Yu, F.P. Jiao, J.H. Jiang, X.Q. Chen, Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes, Radioanal. Nucl. Chem., 299 (2014) 1155–1163.
  15. N. Mubarak, J. Sahu, E. Abdullah, N. Jayakumar, Removal of heavy metals from wastewater using carbon nanotubes, Sep. Purif. Rev., 43 (2014) 311–338.
  16. X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management, a review, Chem. Eng. J., 170 (2011) 395–410.
  17. D.Y. Lyon, D.A. Brown and P.J.J. Alvarez., Implications and potential applications of actericidal fullerene water suspen sions: effect of nC60 concentration, exposure conditions and shelf life, Water Sci. Tech., 57 (2008) 1533–1538.
  18. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminster-fullerene, Nature, 318 (1985) 162–163.
  19. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56–58.
  20. A. Hirsch, C. Bellavia-Lund, Fullerenes and Related Structures, (A. Hirsch Ed.). Berlin: Springer, 1999.
  21. L.Y. Chiang, J.W. Swirczewski, C.S. Hsu, S.K. Chowdhury, S. Cameron, Multi-hydroxy additions onto C60 fullerene molecules, Chem. Comm., 24 (1992) 1791–1793.
  22. L.Y. Chiang, R.B. Upasani, J.W. Swirezewski, S. Soled, Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry, J. Am. Chem. Soc., 115 (1993) 5453–5457.
  23. J. Li, A. Takeuchi, M. Ozawa, XH. Li, K. Saigo, K. Kitazawa, C60 fullerol formation catalysed by quaternary ammonium hydroxides, Chem. Comm., 23 (1993) 1784–1785.
  24. S. Wang, P. He, J. Yhang, H. Jiang, S. Zhu, Novel and efficient synthesis of water-soluble 60 fullerenol by solvent-free reaction, Syn. Comm., 35 (2005) 1803–1808.
  25. G. Zhang, Y. Liu, D. Liang, L. Gan, Y. Li, Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8, Angewandte Chemie Int. Ed., 49 (2010) 5293–5295.
  26. K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima, Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups, ACS Nano, 2 (2008) 327–333.
  27. H. Paloniemi, T. Aaritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, J. Lukkari, Water-soluble full-length single-wall carbon nanotube polyelectrolytes: preparation and characterization, J. Phys. Chem. B, 109 (2005) 8634–8642.
  28. N. Hu, G. Dang, H. Zhou, J. Jing, C. Chen, Efficient direct water dispersion of multi-walled carbon nanotubes by functionalization with lysine, Mater. Lett., 61 (2007) 5285–5287.
  29. X.F. Zhang, T.V. Sreekumar, T. Liu, S. Kumar, Properties and structure of nitric acid oxidized single wall carbon nanotube films, J. Phys. Chem. B, 108 (2004) 16435–16440.
  30. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Large-scale purification of single-wall carbon nanotubes: process, product, and characterization, App. Phys. Mat. Sci. Proc., 67 (1998) 29–37.
  31. Q. Liao, J. Sun, L. Gao, Adsorption of chlorophenols by multiwalled carbon nanotubes treated with HNO3 and NH3, Carbon., 46 (2008) 553–555.
  32. S. Zhang, T. Shado, S.S. Bekaroglu, T. Karanfil, The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compound, Environ. Sci. Technol., 43 (2009) 5719–5725.
  33. N. Martin, J.F. Nierengarten, Supramolecular chemistry of fullerenes and carbon nanotubes, G. Francesco, A. Herranz, M. Nazario, Carbon Nanostructures: Covalent and Macromolecular Chemistry, Wiley–VCH, Germany, 2012.
  34. B.W. Smith, M. Monyhious and D.D. Luzzi, Encapsulated C60 in carbon nanotubes, Nature., 396 (1998) 323–324.
  35. A.B. Bourlinos, V. Georgakilas, A. Bakandritsos, A. Kouloumpis, D. Gournis, R. Zbori, Aqueous-dispersible fullerol-carbon nanotube hybrids, Mater. Lett., 82 (2012) 48–50.
  36. VK. padhyayula, S. Deng, MC. Mitchell, GB. Smith, Application of carbon nanotube echnology for removal of ontaminants in drinking water, a review, Sci. Total Environ., 408 (2009) 1–13.
  37. M.E. Milanesio, M.B. Spesia, M.P. Cormick, E.N. Durantini, Mechanistic studies on the photodynamic effect induced by a dicationic fullerene C60 derivative on Escherichia coli and Candida albicanscells, Photodiagn. Photodyn. Therapy, 10 (2013) 320–327.
  38. X. Tao, Y. Yu, J.D. Fortner, Y. He, Y. Chen, J.B. Hughes, Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmusobliquus, Chemosphere, 122 (2014) 162–167.
  39. B. Fugetsu, S. Satoh, T. Shiba, T. Mizutani, Y.B. Lin, N. Terui, Y. Nodasaka, K. Sasa., K. Shimizu, T. Akasaka, Caged multiwall carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes, Env. Sci. Technol., 38 (2004) 6890–6896.
  40. X.J. Peng, Y.H. Li, Z.K. Luan, Z.C. Di, H.Y. Wang, B.H. Tian, Z.P. Jia, Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys., 376 (2003) 154–158.
  41. M. Calvaresi, F. Zerbetto, The devil and holy water: protein and carbon nanotube hybrids, Acc. Chem. Res., 46 (2013) 2454–2463.
  42. Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwall carbon nanotubes, Carbon, 41 (2003) 2787–2792.
  43. Q. Liu, Q. Cui, X. J. Li, L. Jin, The applications of buckminsterfullerene C60 and derivatives in orthopaedic research, Connect Tissue Res., 55(2014) 71–79.
  44. D.Y. Lyon, D.A. Brown, P.J.J. Alvarez., Implications and potential applications of actericidal fullerene water suspensions: effect of nC60 concentration, exposure conditions and shelf life, Water Sci. Tech., 57 (2007) 1533–1538.
  45. D.D. Amarendra, P.D. Shashi, G. Krishna, S. Mika, Strengthening adsorptive amelioration: Isotherm modeling in liquid phase surface complexation of Pb(II) and Cd(II) ions, Desalination, 267 (2010) 25–33.
  46. S. Lagergren, About the theory of so called adsorption of solute substances, Ksver Veterskapsakad Handl., 24 (1898) 1–6.
  47. Y.S. Ho, G. McKay, The sorption of lead (II) ions on peat, Water Res., 33 (1999) 578–584.
  48. T.W. Weber, R.K. Chatravorti, Pore and solid diffusion models for fixed bed adsorbers, Am. Inst. Chem. Eng., 20 (1974) 228–238.
  49. AG. Ritchie, Alternative to elovich equation for kinetics of adsorption of gases on solids. Chem. Soc., Faraday Trans., 73 (1977) 1650–1653.
  50. Y.S. Ho, G. McKay, Competitive sorption of copper and nickel ions from aqueous solution using peat, Adsorption, 5 (1999a) 409–417.
  51. R. Prabakaran, S. Arivoli, Biosorption of Ferrous Ion from Aqueous Solutions by using Activated carbon prepared from Thespesia Populnea Bark, Arch. Appl. Sci. Res., 3 (2011) 218–232.
  52. H.M.F. Freundlich, Over the adsorption in solution, Phys. Chem., 57(1906) 385–471.
  53. M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of the activated charcoal, Proc. Acad. Sci. USSR Phys. Chem. Sect., 55 (1947) 331–337.
  54. W. Rondon, D. Freire, Z. de Benzo, A.B. Sifontes, Y. González, M. Valero, J.L. Brito, Application of 3A zeolite prepared from venezuelan kaolin for removal of Pb(II) from wastewater and its determination by flame atomic absorption spectrometry, Am. J. Anal. Chem., 4 (2013) 584–593.
  55. H. Chen, J. Zhao, G. Dai, J. Wu, H. Yan., Desorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, Fallen Cinnamomum camphora leaves, Desalination, 262 (2010) 174–182.
  56. S.N. Dash, R. Murthy, Preparation of carbonaceous heavy metal adsorbent from Shorea robusta leaf litter using phosphoric acid impregnation, Env. Sci., 1 (2010) 296–313.
  57. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-fard, Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies, Ind. Eng. Chem., 20 (2014) 2193–2199.
  58. M. Naushad, Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng., 235 (2014) 100–108.
  59. M. Naushad, Z.A. ALOthman, M. Rabiul Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  60. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-fard, A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: Kinetics equilibrium and thermodynamic study, Ind. Eng. Chem., 20 (2014) 454–461.
  61. A. Mittal, M. Naushad, G. Sharma, Z.A. ALOthman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium, Desal. Water Treat., 57 (2016) 21863–21869.
  62. R. Bushra, M. Naushad, R. Adnan, M.N.M. brahima, M. Rafatullah, Polyaniline supported nanocomposite cation exchanger: Synthesis, characterization and applications for the efficient removal of Pb2+ ion from aqueous medium, Ind. Eng. Chem., 21 (2015) 1112–1118.
  63. Y. Guthaa, V.S. Munagapati, M. Naushadc and K. Abbur., Removal of Ni(II) from aqueous solution by Lycopersicum esculentum (tomato) leaf powder as a low-cost biosorbent, Desal. Water Treat., 54 (2015) 200–208.
  64. A.N. Siyal, S.Q. Memon, M.I. Khaskheli, Optimization and equilibrium studies of Pb(II) removal by Grewia Asiatica seed: a factorial design approach, Polish J. Chem. Technol., 14 (2012) 71–77.