References
- W.W. Eckenfelder, D.L. Ford, A.J. Englande, Industrial Water
Quality, 4th ed., The McGraw-Hill Companies, New York, 2009.
- A. Zhitkovich, Chromium in drinking water: sources, metabolism,
and cancer risks, Chem. Res. Toxicol., 24 (2011) 1617–1629.
- S.K. Sharma, B. Petrusevski, G. Amy, Chromium removal from
water: a review, J. Water Supply Res. Technol.-Aqua, 57 (2008)
541–553.
- A.M. Nazari, R. Radzinski, A. Ghahreman, Review of arsenic
metallurgy: treatment of arsenical minerals and the immobilization
of arsenic, Hydrometallurgy, 174 (2017) 258–281.
- A.K. Sengupta, D. Clifford, S. Subramonian, Chromate ion-exchange
process at alkaline pH, Water Res., 20 (1986) 1177–1184.
- S. Mustafa, H. Bashir, N. Rehana, A. Naeem, Selectivity reversal
and dimerization of chromate in the exchanger Amberlite
IRA-400, React. Func. Polym., 34 (1997) 135–144.
- V. Neagu, I. Untea, E. Tudorache, C. Luca, Retention of chromate
ion by conventional and N-ethylpyridinium strongly basic
anion exchange resins, React. Func. Polym., 57 (2003) 119–124.
- B. Galán, D. Castañeda, I. Ortiz, Removal and recovery of
Cr(VI) from polluted ground waters: A comparative study of
ion-exchange technologies, Water Res., 39 (2005) 4317–4324.
- B. Mukhopadhyay, J. Sundquist, E. White, Hydro-geochemical
controls on removal of Cr(VI) from contaminated groundwater
by anion exchange, Appl. Geochem., 22 (2007) 370–387.
- T. Shi, Z. Wang, Y. Liu, S. Jia, D. Changming, Removal of
hexavalent chromium from aqueous solutions by D301, D314
and D354 anion-exchange resins, J. Hazard. Mat., 161 (2009)
900–906.
- M.M. El-Moselhy, O.M. Hakami, Selective removal of chromate
using hybrid anion exchanger, Desal. Water Treat., 56
(2015) 2917–2924.
- J. Kim, M.M. Benjamin, Modeling a novel ion exchange process
for arsenic and nitrate removal, Water Res., 38 (2004)
2053–2062.
- T.S. Anirudhan, M.R. Unnithan, Arsenic(V) removal from aqueous
solutions using an anion exchanger derived from coconut
coir pith and its recovery, Chemosphere, 66 (2007) 60–66.
- M.R. Awual, A. Jyo, Rapid column-mode removal of arsenate
from water by cross linked poly (allylamine) resin, Water Res.,
43 (2009) 1229–1236.
- T.S. Anirudhan, S. Jalajamony, Cellulose-based anion
exchanger with tertiary a mine functionality for the extraction
of arsenic(V) from aqueous media, J. Environ. Manage., 91
(2010) 2201–2207.
- M.R. Awual, M.A. Hossain, M.A. Shenashen, T. Yaita, S.
Suzuki, A. Jyo, Evaluating of arsenic(V) removal from water
by weak-base anion exchange adsorbents, Environ. Sci. Pollut.
Res., 20 (2013) 421–430.
- M. Kukučka, N. Kukučka, M. Vojinović-Miloradov, Ž. Tomić,
M. Šiljeg, Effect of extremely high specific flow rates on the
removal of NOM and arsenic from groundwater with an
ion-exchange resin: A pilot-scale study in Northern Serbia, J.
Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 46
(2011) 952–959.
- E.G. Kosandrovich, V.S. Soldatov, Fibrous Ion Exchangers, In:
Dr, I., Luqman, M. (Ed.), Ion Exchange Technology I: Theory
and Materials, Springer Netherlands, Dordrecht, 2012, pp.
299–371.
- L. Dai, L. Cui, D. Zhou, J. Huang, S. Yuan, Resource recovery of
Cr(VI) from electroplating wastewater: Laboratory and pilotscale
investigation using fibrous weak anion exchanger, J. Taiwan
Inst. Chem. Eng., 54 (2015) 170–177.
- C.G. Lee, J.A. Park, J.W. Choi, S.O. Ko, S.H. Lee, Removal and
recovery of Cr(VI) from industrial plating wastewater using
fibrous anion exchanger, Water Air Soil Pollut., 227 (2016) 287–297.
- S.C. Lee, J.K Kang, E.H. Sim, N.C. Choi, S.B. Kim, Modacrylic
anion exchange fibers for Cr(VI) removal from chromium-plating
rinse water in batch and flow-through column experiments,
J. Environ. Sci. Health A Tox. Hazard. Subst. Environ.
Eng., 52 (2017) 1195–1203.
- L. Ruixia, G. Jinlong, T. Hongxiao, Adsorption of fluoride,
phosphate, and arsenate ions on a new type of ion exchange
fiber, J. Colloid Interface Sci., 248 (2002) 268–274.
- L. Dominguez, J. Economy, K. Benak, C.L. Mangun, Anion
exchange fibers for arsenate removal derived from a vinylbenzyl
chloride precursor, Polym. Adv. Technol., 14 (2003) 632–637.
- M.R. Awual, S. Urata, A. Jyo, M. Tamada, A. Katakai, Arsenate
removal from water by a weak-base anion exchange fibrous
adsorbent, Water Res., 42 (2008) 689–696.
- C. Kavaklı, P.A. Kavaklı, B.D. Turan, A. Hamurcu, O. Güven,
Quaternizeddimethylaminoethyl methacrylate strong base
anion exchange fibers for As(V)adsorption, Radiat. Phys.
Chem. Oxf. Engl., 1993, 102 (2014) 84–95.
- S.C. Lee, J.K Kang, E.H. Sim, N.C. Choi, S.B. Kim, As(V)
removal from arsenic wastewater by fibrous anion exchangers,
Desal. Water Treat., 90 (2017) 273–282.
- P.V. Nesteronok, V.S. Soldatov, Acid–base properties of ion
exchangers: V. Synthesis and properties of ion exchangers on
the base of modacrylic polyacrylonitrile–vinylchloride fibers,
React. Function. Polym., 71 (2011) 1033–1039.
- V. Neagu, S. Mikhalovsky, Removal of hexavalent chromium
by new quaternized crosslinked poly (4-vinylpyridines), J.
Hazard. Mater., 183 (2010) 533–540.
- J.P. Coates, A practical approach to the interpretation of infrared
spectra, In: R.A. Meyers, (Ed.), Encyclopedia of Analytical
Chemistry, John Wiley & Sons Ltd UK, Chichester, 2000, pp.
10815–10837.
- G. Li, J. Xiao, W. Zhang, Efficient and reusable a mine-functionalized
polyacrylonitrile fiber catalysts for Knoevenagel
condensation in water, Green Chem., 14 (2012) 2234–2242.
- Y. Turhan, M. Dogan, M. Alkan, Poly(vinyl chloride)/kaolinite
nanocomposites: Characterization and thermal and optical
properties, Ind. Eng. Chem. Res., 49 (2010) 1503–1513.
- S.M. Ashraf, A laboratory manual of polymers, IK International
Publishing House Pvt. Ltd India, New Delhi, 2008.
- M. Koyama, Y. Tsujizaki, S. Sakamuram, New amides from
buckwheat seeds (Fagopyrum esculentum Moench), Agric.
Biol. Chem., 37 (1973) 2749–2753.
- Y.G. Ko, U.S. Choi, T.Y. Kim, D.J. Ahn, Y.J. Chun, FT-IR and isotherm
study on anion adsorption onto novel chelating fibers,
Macromol. Rapid Commun., 23 (2002) 535–539.
- D.H. Shin, Y.G. Ko, U.S. Choi, W.N. Kim, Design of high efficiency
chelate fibers with an a mine group to remove heavy
metal ions and pH-related FT-IR analysis, Ind. Eng. Chem.
Res., 43 (2004) 2060-2066.
- P. Lakshmipathiraj, B.R.V. Narasimhan, S. Prabhakar, G.B.
Raju, Adsorption studies of arsenic on Mn-substituted iron
oxyhydroxide, J. Colloid Interf. Sci., 304 (2006) 317–322.
- M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal
of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers, Chem. Eng. J., 181/182 (2012)
323–333.
- W. Zheng, J. Hu, Z. Han, E. Diesel, Z. Wang, Z. Zheng, C. Ba,
J. Langer, J. Economy, Interactions of Cr(VI) with hybrid anion
exchange/porous carbon fibers in aqueous solution at natural
pH, Chem. Eng. J., 287 (2016) 54−61.
- D.Q.L. Oliveira, M. Gonçalves, L.C.A. Oliveira, L.R.G. Guilherme,
Removal of As(V) and Cr(VI) from aqueous solutions
using solid waste from leather industry, J. Hazard. Mater., 151
(2008) 280–284.
- J. Huang, X. Zhang, L. Bai, S. Yuan, Polyphenylene sulfide
based anion exchange fiber: Synthesis, characterization and
adsorption of Cr(VI), J. Environ. Sci., 24 (2012) 1433–1438.
- W. Wang, M. Li, Q. Zeng, Thermodynamics of Cr(VI) adsorption
on strong alkaline anion exchange fiber, Trans. Nonferrous
Met. Soc. China., 22 (2012) 2831−2839.
- T.S. Anirudhan, J. Nima, S. Sandeep, V.R.N. Ratheesh, Development
of an amino functionalized glycidylmethacrylate-grafted titanium dioxide densified cellulose for the adsorptive
removal of arsenic (V) from aqueous solutions, Chem. Eng. J.,
209 (2012) 362–371.