References
- X.H. Wang, X. Wang, G. Huppes, R. Heijungs, N.Q. Ren, Environmental
implications of increasingly stringent sewage discharge
standards in municipal wastewater treatment plants:
case study of a cool area of China, J. Clean. Prod., 94 (2015)
278–283.
- Q.H. Zhang, W.N. Yang, H.H. Ngo, W.S. Guo, P.K. Jin, M. Dzakpasu,
S.J. Yang, Q. Wang, X.C. Wang, D. Ao, Current status of
urban wastewater treatment plants in China, Environ. Int.,
92–93 (2016) 11–22.
- MOHURD, National Urban Sewage Treatment and Recycling
Facilities Construction in the Thirteenth Five-Year Plan, Ministry
of Housing and Urban-Rural Development of the People’s
Republic of China (MOHURD), 2016.
- MOEP, Discharge Standard of Pollutants for Municipal Wastewater
Treatment Plant (GB18918-2002), Ministry of Environmental
Protection of the People’s Republic of China (MOEP),
2002.
- X. Wang, J.X. Liu, N.Q. Ren, Z.S. Duan, Environmental profile
of typical anaerobic/anoxic/oxic wastewater treatment systems
meeting increasingly stringent treatment standards from
a life cycle perspective, Biores. Technol., 126 (2012) 31–40.
- W.W. Li, G.P. Sheng, R.J. Zeng, X.W. Liu, H.Q. Yu, China’s
wastewater discharge standards in urbanization: evolution,
challenges and implications, Environ. Sci. Pollut. R., 19 (2012)
1422–1431.
- Y. Jiang, China’s water scarcity, J. Environ. Manage., 90 (2009)
3185–3196.
- L. Jin, G. Zhang, H. Tian, Current state of sewage treatment in
China, Water Res., 66 (2014) 85–98.
- Y. Li, R. Qiu, Z. Yang, C. Li, J. Yu, Parameter determination
to calculate water environmental capacity in Zhangweinan
Canal Sub-basin in China, J. Environ. Sci., 22 (2010) 904–907.
- L.H. Kim, S.O. Ko, S. Jeong, J. Yoon, Characteristics of washedoff
pollutants and dynamic EMCs in parking lots and bridges
during a storm, Sci. Total Environ., 376 (2007) 178–184.
- J. Yu, K.S. Min, Y. Kim, Development of EMC-based empirical
model for estimating spatial distribution of pollutant loads,
Desal. Water Treat., 27 (2011) 175–188.
- H.J. Beck, G.F. Birch, The magnitude of variability produced
by methods used to estimate annual stormwater contaminant
loads for highly urbanised catchments, Environ. Monit.
Assess., 185 (2013) 5209–5220.
- S. Wang, L. Xu, F.L. Yang, H. Wang, Assessment of water ecological
carrying capacity under the two policies in Tieling City
on the basis of the integrated system dynamics model, Sci.
Total Environ., 472 (2014) 1070–1081.
- H.Q. Peng, Y. Liu, H.w. Wang, X.L. Gao, Y. Chen, L.M. Ma,
Urban stormwater forecasting model and drainage optimization
based on water environmental capacity, Environ. Earth
Sci., 75 (2016) 1094.
- G.J. He, H.W. Fang, S. Bai, X.B. Liu, M.H. Chen, J. Bai, Application
of a three-dimensional eutrophication model for the
Beijing Guanting Reservoir, China, Ecol. Model., 222 (2011)
1491–1501.
- SZMPG, The Master Plan of Shenzhen (2009–2020) Shenzhen
Municipal People’s Government (SZMPG), 2009.
- C. Ducruet, S.W. Lee, Frontline soldiers of globalisation: Port–city evolution and regional competition, GeoJournal, 67 (2006)
107–122.
- SZMPG, Statistical bulletin of Shenzhen national economic
and social development (http://www.sztj.gov.cn/), Shenzhen
Municipal People’s Government (SZMPG), 2010–2016.
- SZMMFC, Bulletin of Shenzhen Marine Environmental Status,
Shenzhen Marine Monitoring Forecasting Center (SZMMFC),
2017.
- H.Y. Xia, X.L. Li, K. Han, Studies on the environmental capacity
of the Dapeng Bay, Part I: numerical study of water self-purification
capacity, China Environ. Sci., 31 (2011) 2031–2038.
- S.W. Li, H.Y. Li, J.X. Xia, Dapeng Bay water environment capacity
analysis on the base of delft 3D model, Res. Environ. Sci., 18
(2005) 91–95.
- S. Hur, K. Nam, J. Kim, C. Kwak, Development of urban runoff
model FFC-QUAL for first-flush water-quality analysis in
urban drainage basins, J. Environ. Manage., 205 (2018) 73–84.
- X.P. Kong, S.H. Ye, The impact of water temperature on water
quality indexes in north of Liaodong Bay, Mar. Pollut. Bull., 80
(2014) 245–249.
- L. Feng, J. He, J.Y. Ai, X. Sun, F.Y. Bian, X.D. Zhu, Evaluation for
coastal reclamation feasibility using a comprehensive hydrodynamic
framework: A case study in Haizhou Bay, Mar. Pollut.
Bull., 100 (2015) 182–190.
- H.Y. Xia, X.L. Li, K. Han, Studies on the environmental capacity
of the Dapeng Bay, Part II: total load allocation and water
quality planning, China Environ. Sci., 31 (2011) 2039–2045.
- C. Barca, D. Meyer, M. Liira, P. Drissen, Y. Comeau, Y. Andrès,
F. Chazarenc, Steel slag filters to upgrade phosphorus removal
in small wastewater treatment plants: Removal mechanisms
and performance, Ecol. Eng., 68 (2014) 214–222.
- A. Kauppinen, K. Martikainen, V. Matikka, A.M. Veijalainen,
T. Pitkanen, H. Heinonen-Tanski, I.T. Miettinen, Sand filters for
removal of microbes and nutrients from wastewater during a
one-year pilot study in a cold temperate climate, J. Environ.
Manage., 133 (2014) 206–213.
- Q. Zhou, X.Z. Wang, J.Y. Liu, L. Zhang, Phosphorus removal
from wastewater using nano-particulates of hydrated ferric
oxide doped activated carbon fiber prepared by Sol–Gel
method, Chem. Eng. J., 200–202 (2012) 619–626.
- M. Xie, H.K. Shon, S.R. Gray, M. Elimelech, Membrane-based
processes for wastewater nutrient recovery: Technology, challenges,
and future direction, Water Res., 89 (2016) 210–221.
- G. Qiu, Y.P. Ting, Direct phosphorus recovery from municipal
wastewater via osmotic membrane bioreactor (OMBR) for
wastewater treatment, Biores. Technol., 170 (2014) 221–229.
- C. Choi, J. Lee, K. Lee, M. Kim, The effects on operation conditions
of sludge retention time and carbon/nitrogen ratio in an
intermittently aerated membrane bioreactor (IAMBR), Biores.
Technol., 99 (2008) 5397–5401.
- F. Kargi, A. Uygur, Hydraulic residence time effects in biological
nutrient removal using five-step sequencing batch reactor,
Enzyme Microb. Technol., 35 (2004) 167–172.
- J. Serralta, J. Ribes, A. Seco, J. Ferrer, A supervisory control system
for optimising nitrogen removal and aeration energy consumption
in wastewater treatment plants, Water Sci. Technol.,
45 (2002) 309.