References

  1. H.I. Maarof, B.H. Hameed, Ahmed, Adsorption isotherm for phenol onto activated carbon, ASEAN J. Chem. Eng., 4 (2004) 70–76.
  2. T. Bohli, N. Fiol, I. Villaescusa, A. Ouedemi, Adsorption on activated carbon from olive stones: kinetic and equilibrium of phenol removal from aqueous solution, J. Chem. Eng. Process. Technol., 4 (2013) 1–5.
  3. O.J. Hao, H. Kim, P.C. Chiang, Decolorization of wastewater, Crit. Rev. Environ. Sci. Technol., 30 (2000) 449–505.
  4. W.T. Tsai, C.W. Lai, T.Y. Su, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater., B134 (2006) 169–175.
  5. C.S. Shen, Y. Shen, Y.Z. Wen, H.Y. Wang, W.P. Liu, Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(II) hydrogel, Water Res., 45 (2011) 5200–5210.
  6. Y.S. Ho, J. Porter, G. Mckay, Equilibrium isotherm studies for the sorption of divalent metals ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141 (2002) 1–33.
  7. Y.S. Ho, Selection of optimum sorption isotherm, Carbon, 42 (2004) 2113–2130.
  8. Y.S. Ho, Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods, Pol. J. Environ. Stud., 15 (2006) 81–86.
  9. K.V. Kumar, K. Porkodi, Batch adsorber design for different solution volume/adsorbent mass ratios using the experimental equilibrium data with fixed solution volume/adsorbent mass ratio of malachite green onto orange peel, Dyes Pigm., 74 (2007) 590–594.
  10. K.V. Kumar, S. Sivanesan, Isotherm parameters for basic dyes onto activated carbon: comparison of linear and non-linear method, J. Hazard. Mater., B129 (2006) 147–150.
  11. B. Subramanyam, A. Das, Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil, Int. J. Environ. Sci. Technol., 6 (2009) 633–640.
  12. M. Brdar, M. Sciban, A. Takaci, T. Dosenovic, Comparison of two and three parameters adsorption isotherm for Cr(VI) onto kraft lignin, Chem. Eng. J., 183 (2012) 108–111.
  13. D.M. Pavlovic, L. Curkovic, D. Blazek, J. Zupan, The sorption of sulfamethazine on soils samples: isotherms and error analysis, Sci. Total Environ., 497 (2014) 543–552.
  14. B. Subramanyam, A. Das, Linearized and non-linearized isotherm models optimization analysis by error functions and statistical means, J. Environ. Health Sci. Eng., 12 (2014) 1–6.
  15. R. Krishni, K. Foo, B. Hameed, Adsorption of methylene blue onto papaya leaves: comparison of linear and non-linear isotherm analysis, Desal. Wat. Treat., 52 (2014) 6712–6719.
  16. L. Fan, C. Luo, X. Li, F. Lu, H. Qui, M. Sun, Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue, J. Hazard. Mater., 215 (2012) 272–279.
  17. H. Pasalari, H.R. Ghaffari, A.H. Mahvi, M. Pourshabanian, A. Azari, Activated carbon derived from date stone as natural adsorbent for phenol removal from aqueous solution, Desal. Wat. Treat., 72 (2017) 406–417.
  18. A. Bara, T. Kumar, K. Ojha, A. Mandal, Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies, Appl. Surf. Sci., 284 (2013) 87–99.
  19. S. Shahmohammadi-kalalagh, H. Babazadeh, Isotherms for the sorption of zinc and copper onto kaolinite: comparison of various error functions, Int. J. Environ. Sci. Technol., 11 (2014) 111–118.
  20. D.R. Tchuifon Tchuifon, S.A. Gabche, J.M. Ketcha, G.N. Ndifor-Angwafor, J.N. Ndi, Kinetics and equilibrium studies of adsorption of phenol in aqueous solution onto activated carbon prepared from rice and coffee husks, Int. J. Eng. Technol. Res., 2 (2014) 166–173.
  21. M. Davoundinejad, S.A. Gharbanian, Modelling of adsorption isotherm of benzoic compounds onto GAC and introducing three new isotherm models using new concept of adsorption effective surface (AEC), Academic J., 18 (2013) 2263–2275.
  22. F. Brouers, T.J. Al-Musawi, On the optimal use of isotherm models for the characterization of biosorption of lead onto algae, J. Mol. Liquids, 212 (2015) 46–51.
  23. G.P. Jeppu, T.P. Clement, A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects, J. Contam. Hydrol., 129–130 (2012) 46–53.
  24. T.J. Behbahani, Z.J. Behbahani, A new study on asphaltene adsorption in porous media, Petrol. Coal, 56 (2014) 459–466.
  25. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretations of isotherm isotherms, J. Chem., 2017 (2017) 1–11.
  26. R.A. Koble, T.E. Corrigan, Adsorption isotherms for pure hydrocarbons, Ind. Eng. Chem., 44 (1952) 383–387.
  27. L. Jossens, J.M. Prausnitz, W. Fritz, E.U. Schlunder, A.L. Myers, Thermodynamics of multi-solute adsorption from dilute aqueous solutions, Chem. Eng. Sci., 33 (1978) 1097–1106.
  28. Z.L. Yaneva, B.K. Koumanova, N.V. Georgieva, Linear and nonlinear regression methods for equilibrium modelling of p-nitrophenol biosorption by Rhizopus oryzae: comparison of error analysis criteria, J. Chem., 2013 (2013) 1–10.
  29. G. McKay, A. Mesdaghinia, S. Nasseri, M. Hadi, M.S. Aminabad, Optimum isotherms of dyes sorption by activated carbon: fractional theoretical capacity and error analysis, Chem. Eng. J., 251 (2014) 236–247.
  30. N. Sivarajasekar, R. Baskar, Adsorption of basic red onto activated carbon derived from immature cotton seeds: isotherm studies and ether analysis, Desal. Wat. Treat., 52 (2014) 1–23.
  31. C. Chen, Evaluation of equilibrium sorption isotherm equations, Open Chem. Eng. J., 7 (2003) 24–44.
  32. M.A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models, Bioresour. Technol., 113 (2012) 97–103.
  33. M.A. Hossain, H.H. Ngo, W.S. Guo, T. Setiadi, Adsorption and desorption of copper(II) ions onto garden grass, Bioresour. Technol., 121 (2012) 386–395.
  34. M. Hadi, G. Mckay, M.R. Samarghandi, A. Maleki, M.S. Aminabad, Prediction of optimum adsorption isotherm: comparison of chi-square and log-likelihood statistics, Desal. Wat. Treat., 49 (2012) 81–94.
  35. Y.S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res., 40 (2006) 119–126.
  36. J. Omlin, L. Cheseaux, Evaluation des charbons actifs en poudre (CAP) pour l’élimination des micropolluants dans les eaux urbaines. Rapport d’étude, Ecole Polytechnique Fédérale de Lausanne, Lausanne, France, 2010, 62 pp.
  37. V.B. Devi, A.A. Jahagirdar, A.M.N. Zulfigar, Adsorption of Chromium on activated carbon prepared from coconut shell, Int. J. Eng. Res. Appl., 2 (2012) 364–370.
  38. A.M. Puziy, O.I. Poddubnayaa, A. Martınez-Alonso, F. Suarez-Garcıa, J.M.D. Tascon, Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties, Carbon, 40 (2002) 1493–1505.
  39. S. Bourbigot, M. Le Bras, R. Delobel, Carbonization mechanisms resulting from intumescence II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system, Carbon, 33 (1995) 283–294.
  40. D.R.T. Tchuifon, S.G. Anagho, J.M. Ketcha, G.N.A. Nche, J.N. Ndi, Kinetics and equilibrium studies of adsorption of phenol in aqueous solution onto activated carbon prepared from rice and coffee husks, Int. J. Eng. Technol. Res., 2 (2014) 166–173.