References

  1. H. Basiri, H. Nourmoradi, F. Mohammadi moghadam, K. Moghadam, J. Mohammadian, Y. Khaniabadi, Removal of aniline as a health-toxic substance from polluted water by aloe vera waste-based activated carbon, Der Pharma Chem., 11 (2015) 149–155.
  2. N. Hankins, N. Hilal, First Oxford and Nottingham Water and Membranes Research Event 2–4 July 2006, Oxford, UK Feasibility study of the treatment of aniline hypersaline wastewater with a combined adsorption/bio-regeneration system, Desalination, 227 (2008) 139–149.
  3. X. Lin, J. Zhang, X. Luo, Y. Zhou, Removal of aniline using lignin grafted acrylic acid from aqueous solution, J. Chem. Eng., 172 (2011) 856–863.
  4. H. Al-Johani, M.A. Salam, Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution, J. Colloids Interface Sci., 360 (2011) 760–767.
  5. G.Q. Wu, X. Zhang, H. Hui, Q. Zhang, Y. Dai, Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon, J. Chem. Eng., 185 (2012) 201–210.
  6. R. Hu, S. Dai, D. Shao, A. Alsaedi, B. Ahmad, X. Wang, Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites, J. Mol. Liq., 203 (2015) 80–89.
  7. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem, 110 (2006) 20211–20216.
  8. J. Anotai, Ch. Su, Y. Tsai, M. Lu, Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes, J. Hazard. Mater., 183 (2010) 888–893.
  9. S.P. Kamble, S. Sawant, J. Schouten, Photocatalytic and photochemical degradation of aniline using concentrated solar radiation, J. Chem. Technol. Biotechnol., 78 (2003) 865–872.
  10. J. Liu, J. Guan, M. Lu, Q. Kan, Zh. Li, Hemoglobin immobilized with modified “fish-in-net” approach for the catalytic removal of aniline, J. Hazard. Mater., 217 (2012) 156–163.
  11. Y. Han, X. Quan, Sh. Chen, H. Zhao, Ch. Cui, Electrochemically enhanced adsorption of aniline on activated carbon fibers, Sep. Purif. Technol., 50 (2006) 365–372.
  12. G. Zhang, F. Yang, L. Liu, Comparative study of Fe2+/H2O2 and Fe3+/H2O2 electro-oxidation systems in the degradation of amaranth using anthraquinone/polypyrrole composite film modified graphite cathode, J. Electroanal. Chem., 632 (2009) 154–161.
  13. A. Zuorro, M. Fidaleo, R. Lavecchia, Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process, J. Environ. Manage., 127 (2013) 28–35.
  14. K. Chen, G. Wang, W. Li, D. Wang, L. Lu, Application of response surface methodology for optimization of Orange II removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles, Chin. Chem. Lett., 25 (2014) 1455–1460.
  15. A. Rezaee, S. Jorfi, A. Jaafarzadeh Haghighifard, Application of Fenton-like process using iron nano oxides for pyrene removal from contaminated soils, Iran. J. Health. Environ., 7 (2014) 301–314.
  16. M. Usman, P. Faure, C. Ruby, Kh. Hanna, Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation, Appl. Catal. Environ., 117 (2012) 10–17.
  17. M. Bahrami, S. Borumandnasab, H. Kashkuli, A. Babaei, Synthesis of magnetite nanoparticles (Fe3O4) and its efficiency in cadmium removal from aqueous solutions, Water Wastewater, 3 (2012) 54–62.
  18. G. Zhao, X. Lu, Y. Zhou, Aniline degradation in aqueous solution by UV-aeration and UV-micro-O3 processes: efficiency, contribution of radicals and byproducts, Chem. Eng. J., 229 (2013) 436–443.
  19. J. Anotai, M.-C. Lu, P. Chewpreecha, Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Res., 40 (2006) 1841–1847.
  20. R.S. Bose, S. Dey, S. Saha, Ch. Ghosh, M. Chaudhuri, Enhanced removal of dissolved aniline from water under combined system of nano zero-valent iron and Pseudomonas putida, Sustain. Water Resour. Manage., 2 (2016) 143–159.
  21. A. Chaleshtori, F. Mohammadimoghadam, M. Sadeghi, R. Rahimi, S. Hemati, Removal of Acid Red 18 (azo-dye) from aqueous solution by adsorption onto activated charcoal prepared from almond shell, J. Environ. Sci. Manage., 20 (2017) 9–16.
  22. S. Nourozi, R. Zare-Dorabei, Highly efficient ultrasonic-assisted removal of methylene blue from aqueous media by magnetic mesoporous silica: experimental design methodology, kinetic and equilibrium studies, Desal. Wat. Treat., 85 (2017) 184–196.
  23. M.S. Tehrani, R. Zare-Dorabei, Competitive removal of hazardous dyes from aqueous solution by MIL-68 (Al): derivative spectrophotometric method and response surface methodology approach, Spectrochim. Acta, Part A, 160 (2016) 8–18.
  24. R. Zare-Dorabei, S. Ferddowsi, A. Barzin, A. Tadjarodi, Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2′-dipyridylamine: central composite design optimization, Ultrason. Sonochem., 32 (2016) 265–276.
  25. M.B. Kasiri, A.R. Khataee, Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: experimental design, Desalination, 270 (2011) 151–159.
  26. M. Arbabi, S. Hemati, Z. Shamsizadeh, A. Arbabi, Nitrate removal from aqueous solution by almond shells activated with magnetic nanoparticles, Desal. Wat. Treat., 80 (2017) 344–351.
  27. K. Dashtian, R. Zare-dorabi, R. Jafarinia, M. Tehrani, Application of central composite design for optimization of preconcentration and determination of La (III) ion in water samples using the SBA-15-HESI and SBA-15-HESI-Fe3O4-NPs sorbents, J. Environ. Chem. Eng., 5 (2017) 5233–5240.
  28. F. Nemati, R. Zare-dorabi, M. Hosseini, M. Ganjali, Fluorescence turn-on sensing of thiamine based on Arginine – functionalized graphene quantum dots (Arg-GQDs): central composite design for process optimization, Sens. Actuators, B, 255 (2018) 2078–2085.
  29. V.A. Sakkas, M. Ialam, C. Stalikas, T. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation, J. Hazard. Mater., 175 (2010) 33–44.
  30. B.K. Körbahti, M.A. Rauf, Determination of optimum operating conditions of carmine decoloration by UV/H2O2 using response surface methodology, J. Hazard. Mater., 161 (2009) 281–286.
  31. Q. Liu, Y.X. Liu, X. Lu, Combined photo-Fenton and biological for the treatment of anilin wastewater, Procedia Environ. Sci., 12 (2012) 341–348.
  32. M. Aslam, Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols, J. Hazard. Mater., 286 (2015) 127–135.
  33. A. Mandal, K. Ojha, K. De.Asim, S. Bhattacharjee, Removal of catechol from aqueous solution by advanced photo-oxidation process, Chem. Eng. J., 102 (2004) 203–208.
  34. G. Shams-khoramabadi, Aniline degradation using advanced oxidation process by UV/peroxy disulfate from aqueous solution, Int. J. Eng. Trans. B: Appl., 30 (2017) 684.
  35. A. Yazdanbakhsh, Investigation of combined process of coagulation and Fenton-like advanced oxidation to remove the antibiotic clarithromycin COD synthetic wastewater, J. Lorestan Univ. Med. Sci., 13 (2011) 7–16.
  36. A. Benito, A. Penades, J. Liberia, R. Gonzalez, Degradation pathways of aniline in aqueous solutions during electrooxidation with BDD electrodes and UV/H2O2 treatment, Chemosphere, 166 (2017) 230–237.
  37. M. Malakootian, M. Asadi, Efficiency of fenton oxidation process in removal of phenol in aqueous solutions, water and wastewater, 3 (2011) 47–52.
  38. S. Dehghani, A. Jafari, M. Farzadkia, M. Gholami, Sulfonamide antibiotic reduction in aquatic environment by application of fenton oxidation process, Iran. J. Environ. Health Sci. Eng., 10 (2013) 29.
  39. H. Chen, Zh. Zhang, Z. Bai, Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS, J. Chem. Eng., 273 (2015) 481–489.
  40. Z.C. Kadirova, K. Katsumata, K. Okada, Adsorption and photodegradation of methylene blue with Fe2O3-activated carbons under UV illumination in oxalate solution, J. Environ. Chem. Eng., 2 (2014) 2026–2036.
  41. S. Zhang, X. Zhau, Y. Cai, G. Jiang, Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds, J. Hazard. Mater., 167 (2009) 560–566.
  42. A. Gogoi, M. Navgire, P. Gogoi, Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol, Chem. Eng., 311 (2017) 153–162.
  43. B. Kayan, B. Gözmen, Degradation of Acid Red 274 using H2O2 in subcritical water: application of response surface methodology, J. Hazard. Mater., 201 (2012) 100–106.
  44. S. Karthikeyan, V. Gupta, A. Titus, G. Sekaran, A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies, J. Mol. Liq., 173 (2012) 153–163.
  45. G. Lofrano, Advanced oxidation of catechol: a comparison among photocatalysis, Fenton and photo-Fenton processes, Desalination, 249 (2009) 878–883.
  46. E. Azizi, M. Gayebzade, K. Shrafi, M. Pirsaheb, Oxidation of aniline with photo-Fenton advanced oxidation process from aqueous solutions in batch reactor, Techn. J. Eng. Appl. Sci., 5 (2015) 12–16.
  47. I. Sanchez, F. Stuber, J. Font, Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure, Chemosphere, 68 (2007) 338–344.
  48. S. Rahdar, A. Sh, Removal of phenol and aniline from aqueous solutions by using adsorption on to Pistacia terebinthus: study of adsorption isotherm and kinetics, J. Health Res. Commun., Winter, 2 (2017) 35–45.
  49. M. Pirsaheb, B. Shahmoradi, H. Hossini, Gh. Ashraf, Photocatalytic degradation of aniline from aqueous solutions under sunlight illumination using immobilized Cr: ZnO nanoparticles, Sci. Rep., 7 (2017) 1473.