References
- J. Lu, Z.R. Wang, X.Y. Ma, Q. Tang, Y. Li, Modeling of the
electrocoagulation process: a study on the mass transfer of
electrolysis and hydrolysis products, Chem. Eng. Sci., 165
(2017) 165–176.
- M. Vepsäläinen, M. Pulliainen, M. Sillanpää, Effect of
electrochemical cell structure on natural organic matter (NOM)
removal from surface water through electrocoagulation (EC),
Sep. Purif. Technol., 99 (2012) 20–27.
- A. Akyol, Treatment of paint manufacturing wastewater by
electrocoagulation, Desalination, 285 (2012) 91–99.
- J. Lu, Z.R. Wang, Y.L. Liu, Q. Tang, Removal of Cr ions from
aqueous solution using batch electrocoagulation: Cr removal
mechanism and utilization rate of in situ generated metal ions,
Process Saf. Environ. Prot., 104 (2016) 436–443.
- D. Lakshmanan, D.A. Clifford, G. Samanta, Ferrous and ferric
ion generation during iron electrocoagulation, Environ. Sci.
Technol., 43 (2009) 3853–3859.
- U. Tezcan Un, A. Savas Koparal, U. Bakir Ogutveren, Fluoride
removal from water and wastewater with a bach cylindrical
electrode using electrocoagulation, Chem. Eng. J., 223 (2013)
110–115.
- T. Harif, M. Khai, A. Adin, Electrocoagulation versus chemical
coagulation: coagulation/flocculation mechanisms and
resulting floc characteristics, Water Res., 46 (2012) 3177–3188.
- D. Lakshmanan, D.A. Clifford, G. Samanta, Comparative
study of arsenic removal by iron using electrocoagulation and
chemical coagulation, Water Res., 44 (2010) 5641–5652.
- J. Lu, Q. Tang, Z.R. Wang, C. Xu, S.L. Lin, A study on continuous
and batch electrocoagulation process for fluoride removal,
Desal. Wat. Treat., 57 (2016) 28417–28425.
- J. Lu, Y. Li, M.X. Yin, X.Y. Ma, S.L. Lin, Removing heavy metal
ions with continuous aluminum electrocoagulation: a study on
back mixing and utilization rate of electro-generated Al ions,
Chem. Eng. J., 267 (2015) 86–92.
- S. Ahmadzadeha, A. Asadipourc, M. Yoosefiand, M.
Dolatabadie, Improved electrocoagulation process using
chitosan for efficient removal of cefazolin antibiotic from
hospital wastewater through sweep flocculation and
adsorption: kinetic and isotherm study, Desal. Wat. Treat., 92
(2017) 160–171.
- S. Ahmadzadeh, A. Asadipour, M. Pournamdari, B. Behnam,
H.R. Rahimi, M. Dolatabadi, Removal of ciprofloxacin from
hospital wastewater using electrocoagulation technique by
aluminum electrode; optimization and modelling through
response surface methodology, Process Saf. Environ. Prot., 109
(2017) 538–547.
- M. Yoosefian, S. Ahmadzadeh, M. Aghasi, M. Dolatabadi,
Optimization of electrocoagulation process for efficient removal
of ciprofloxacin antibiotic using iron electrode: kinetic and
isotherm studies of adsorption, J. Mol. Liq., 225 (2017) 544–553.
- K.W. Pi, Q. Xiao, H.Q. Zhang, M. Xia, A.R. Gerson, Decolorization
of synthetic Methyl Orange wastewater by electrocoagulation
with periodic reversal of electrodes and optimization by RSM,
Process Saf. Environ., 92 (2014) 796–806.
- N. Drouiche, S. Aoudj, H. Lounici, M. Drouiche, T. Ouslimane,
N. Ghaffour, Fluoride removal from pretreated photovoltaic
wastewater by electrocoagulation: an investigation of the effect
of operational parameters, Procedia Eng., 33 (2012) 385–391.
- E. Bazrafshan, K.A. Ownagh, A.H. Mahvi, Application of
electrocoagulation process using iron and aluminum electrodes
for fluoride removal from aqueous environment, J. Chem., 9
(2012) 2297–2308.
- M.M. Emamjomeh, M. Sivakumar, Fluoride removal by
a continuous flow electrocoagulation reactor, J. Environ.
Manage., 90 (2009) 1204–1212.
- Y. Tian, W. He, X. Zhu, W. Yang, N. Ren, B.E. Logan, Energy
efficient electrocoagulation using an air-breathing cathode to
remove nutrients from wastewater, Chem. Eng. J., 292 (2016)
308–314.
- Y. Si, G. Li, F. Zhang, Energy-efficient oxidation and removal
of arsenite from groundwater using air-cathode iron
electrocoagulation, Environ. Sci. Technol., 2 (2016) 71–75.
- J.H. Kim, H.A. Maitlo, J.Y. Park, Treatment of synthetic arsenate
wastewater with iron-air fuel cell electrocoagulation to supply
drinking water and electricity in remote areas, Water Res., 115
(2017) 278–286.
- P. Song, Z. Yang, G. Zeng, X. Yang, H. Xu, L. Wang, R. Xu, W.
Xiong, K. Ahmad, Electrocoagulation treatment of arsenic in
wastewaters: a comprehensive review, Chem. Eng. J., 317 (2017)
707–725.
- P.V. Nidheesh, T.S.A. Singh, Arsenic removal by
electrocoagulation process: recent trends and removal
mechanism, Chemosphere, 181 (2017) 418–432.
- N. Balasubramanian, T. Kojima, C. Srinivasakannan, Arsenic
removal through electrocoagulation: kinetic and statistical
modeling, Chem. Eng. J., 155 (2009) 76–82.
- C. Delaire, S. Amrose, M. Zhang, J. Hake, A. Gadgil, How
do operating conditions affect As(III) removal by iron
electrocoagulation?, Water Res., 112 (2017) 185–194.
- B. Yang, Y. Han, G. Yu, Q. Zhuo, S. Deng, J. Wu, P. Zhang,
Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous
solution by electrocoagulation using iron electrode, Chem. Eng.
J., 303 (2016) 384–390.
- Z. Ma, Y. Yang, Y. Jiang, B. Xi, T. Yang, X. Peng, X. Lian, K.
Yan, H. Liu, Enhanced degradation of 2,4-dinitrotoluene in
groundwater by persulfate activated using iron–carbon microelectrolysis,
Chem. Eng. J., 311 (2017) 183–190.
- K.S. Hashim, A. Shaw, R. Al Khaddar, M.O. Pedrola, D. Phipps,
Iron removal, energy consumption and operating cost of
electrocoagulation of drinking water using a new flow column
reactor, J. Environ. Manage., 189 (2017) 98–108.
- L. Li, C.M.v. Genuchten, S.E.A. Addy, J. Yao, N. Gao, A.J.
Gadgil, Modeling As(III) oxidation and removal with iron
electrocoagulation in groundwater, Environ. Sci. Technol., 46
(2012) 12038–12045.
- J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P.
Drogui, J. Naja, Electrocoagulation process in water treatment:
a review of electrocoagulation modeling approaches,
Desalination, 404 (2017) 1–21.
- K.L. Dubrawski, C. Du, M. Mohseni, General potential-current
model and validation for electrocoagulation, Electrochim. Acta,
129 (2014) 187–195.
- A. Vazquez, I. Rodriguez, I. Lazaro, Primary potential and
current density distribution analysis: a first approach for
designing electrocoagulation reactors, Chem. Eng. J., 179 (2012)
253–261.
- X. Chen, G. Chen, P.L. Yue, Investigation on the electrolysis
voltage of electrocoagulation, Chem. Eng. Sci., 57 (2002)
2449–2455.
- Z. Qi, S. You, N. Ren, Wireless electrocoagulation in water
treatment based on bipolar electrochemistry, Electrochim. Acta,
229 (2017) 96–101.
- M. Mechelhoff, G.H. Kelsall, N.J.D. Graham, Electrochemical
behaviour of aluminium in electrocoagulation processes, Chem.
Eng. Sci., 95 (2013) 301–312.
- J. Lu, Y.X. Wang, J. Zhu, Numerical simulation of the
electrodeionization (EDI) process accounting for water
dissociation, Electrochim. Acta, 55 (2010) 2673–2686.
- J. Lu, Y.X. Wang, Y.Y. Lu, G.L. Wang, L. Kong, J. Zhu,
Numerical simulation of the electrodeionization (EDI) process
for producing ultrapure water, Electrochim. Acta, 55 (2010)
7188–7198.
- J. Lu, X.Y. Ma, Y.X. Wang, Numerical simulation of the
electrodeionization (EDI) process with layered resin bed
for deeply separating salt ions, Desal. Wat. Treat., 57 (2015)
10546–10559.
- L.P. Holmes, D.L. Cole, E.M. Eyring, Kinetics of aluminum ion
hydrolysis in dilute solutions, J. Phys. Chem., 72 (1968) 301–304.
- J.M. Duan, J. Gregory, Coagulation by hydrolysing metal salts,
Adv. Colloid Interface Sci., 100–102 (2003) 475–502.