References
- A. Reynaud, An econometric estimation of industrial water
demand in France, Environ. Resour. Econ., 25 (2003) 213–232.
- P. Burek, Y. Satoh, Y. Wada, M. Floerke, S. Eisner, N. Hanasaki,
D. Wiberg, Looking at the Spatial and Temporal Distribution of
Global Water Availability and Demand, Vol. 18, EGU General
Assembly Conference Abstracts, 2016, p. 16663.
- A.D. Khawaji, I.K. Kutubkhanah, J. Wie, Advances in seawater
desalination technologies, Desalination, 221 (2008) 47–69.
- N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and
evaluation of the economics of water desalination: current
and future challenges for better water supply sustainability,
Desalination, 309 (2013) 197–207.
- H.M. Ettouney, H.T. El-Dessouky, Fundamentals of Salt Water
Desalination, Elsevier, Amsterdam, 2002.
- A. Gambier, A. Krasnik, E. Badreddin, Dynamic Modeling of
a Simple Reverse Osmosis Desalination Plant for Advanced
Control Purposes, American Control Conference, ACC’07,
IEEE, 2007, pp. 4854–4859.
- A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination
unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
- A. Gambier, A. Wellenreuther, E. Badreddin, Control
system design of reverse osmosis plants by using advanced
optimization techniques, Desal. Wat. Treat., 10 (2009) 200–209.
- B.D.H. Phuc, S. You, T. Lim, H. Kim, Modified PID control with
H∞ loop shaping synthesis for RO desalination plants, Desal.
Wat. Treat., 57 (2016) 25421–25434.
- J.Z. Assef, J.C. Watters, P.B. Deshpande, I.M. Alatiqi, Advanced
control of a reverse osmosis desalination unit, J. Process Control,
7 (1997) 283–289.
- A.R. Bartman, P.D. Christofides, Y. Cohen, Nonlinear modelbased
control of an experimental reverse-osmosis water
desalination system, Ind. Eng. Chem. Res., 48 (2009) 6126–6136.
- H.E. Fath, Solar distillation: a promising alternative for water
provision with free energy, simple technology and a clean
environment, Desalination, 116 (1998) 45–56.
- H.B. Bacha, M. Bouzguenda, M.S. Abid, A.Y. Maalej, Modelling
and simulation of a water desalination station with solar
multiple condensation evaporation cycle technique, Renewable
Energy, 18 (1999) 349–365.
- M.I Shatat, K. Mahkamov, Determination of rational design
parameters of a multi-stage solar water desalination still using
transient mathematical modelling, Renewable Energy, 35 (2010)
52–61.
- H. Müller-Holst, M. Engelhardt, W. Schölkopf, Small-scale
thermal seawater desalination simulation and optimization of
system design, Desalination, 122 (1999) 255–262.
- V.G. Gude, Geothermal source potential for water desalination–
current status and future perspective, Renewable Sustainable
Energy Rev., 57 (2016) 1038–1065.
- A.Z. Al-Garni, W.G. Abdelrahman, Water Desalination System
using Geothermal Energy, March 22, 2016, US Patent 9,289,696.
- E. Ahmetović, I.E. Grossmannb, Z. Kravanjac, N. Ibrić, Water
Optimization in Process Industries, 2016.
- C.C. Coello, Evolutionary multi-objective optimization: a
historical view of the field, IEEE Comput. Intell. Mag., 1 (2006)
28–36.
- K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol.
Comput., 6 (2002) 182–197.
- M.T. Jensen, Reducing the run-time complexity of multiobjective
EAs: the NSGA-II and other algorithms, IEEE Trans. Evol.
Comput., 7 (2003) 503–515.
- A. Ishizaka, A. Labib, Review of the main developments in
the analytic hierarchy process, Expert Syst. Appl., 38 (2011)
14336–14345.
- A. Afshari, M. Mojahed, R.M. Yusuff, Simple additive weighting
approach to personnel selection problem, Int. J. Innovation
Manage. Technol., 1 (2010) 511.
- S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015)
80–98.
- I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudopure
fluid thermophysical property evaluation and the opensource
thermophysical property library coolprop, Ind. Eng.
Chem. Res., 53 (2014) 2498–2508.
- E. Sokolov, Flow Machines, Moskva Energoatomizdat, Moscow,
1989 (in Russian).
- R.K. Sinnott, G. Towler, Chemical Engineering Design: SI ed.,
Elsevier, Lincare Hous, Jordan Hill, Oxford OX2 8DP, 2009.
- W.D. Seider, J.D. Seader, D.R. Lewin, Product and Process
Design Principles: Synthesis, Analysis and Evaluation, (With
CD), John Wiley & Sons, 2009.
- W.M. Vatavuk, Updating the CE plant cost index, Chem. Eng.,
109 (2002) 62–70.
- R.K. Shah, D.P. Sekulic, Fundamentals of Heat Exchanger
Design, John Wiley & Sons, Hoboken, New Jersey, 2003.
- T.L. Bergman, F.P. Incropera, Fundamentals of Heat and Mass
Transfer, John Wiley & Sons, 2016.
- B.M. Jacimovic, S.B. Genic, Thermal Operations and Apparatus,
Part 1: Recuperative Heat Exchangers, Faculty of Mechanical
Engineering, Belgrade, 2004.
- S.B. Genić, B.M. Jaćimović, D. Mandić, D. Petrović, Experimental
determination of fouling factor on plate heat exchangers in
district heating system, Energy Build., 50 (2012) 204–211.
- P. Milanovic, B.M. Jacimovic, S.B. Genic, Experimental
measurement of fouling resistance in the heat exchanger of a
geothermal heating system, Geothermics, 35 (2006) 79–86.
- K.J. Åström, T. Hägglund, Advanced PID Control, ISA – The
Instrumentation, Systems and Automation Society, Research
Triangle Park, NC 27709, 2006.
- G. Zaidner, S. Korotkin, E. Shteimberg, A. Ellenbogen, M.
Arad, Y. Cohen, Non Linear PID and Its Application in Process
Control, Vol. 26, Convention of Electrical and Electronics
Engineers in Israel (IEEEI), IEEE, 2010, pp. 574–577.
- Y.X. Su, D. Sun, B.Y. Duan, Design of an enhanced nonlinear
PID controller, Mechatronics, 15 (2005) 1005–1024.