References

  1. A. Reynaud, An econometric estimation of industrial water demand in France, Environ. Resour. Econ., 25 (2003) 213–232.
  2. P. Burek, Y. Satoh, Y. Wada, M. Floerke, S. Eisner, N. Hanasaki, D. Wiberg, Looking at the Spatial and Temporal Distribution of Global Water Availability and Demand, Vol. 18, EGU General Assembly Conference Abstracts, 2016, p. 16663.
  3. A.D. Khawaji, I.K. Kutubkhanah, J. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  4. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  5. H.M. Ettouney, H.T. El-Dessouky, Fundamentals of Salt Water Desalination, Elsevier, Amsterdam, 2002.
  6. A. Gambier, A. Krasnik, E. Badreddin, Dynamic Modeling of a Simple Reverse Osmosis Desalination Plant for Advanced Control Purposes, American Control Conference, ACC’07, IEEE, 2007, pp. 4854–4859.
  7. A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
  8. A. Gambier, A. Wellenreuther, E. Badreddin, Control system design of reverse osmosis plants by using advanced optimization techniques, Desal. Wat. Treat., 10 (2009) 200–209.
  9. B.D.H. Phuc, S. You, T. Lim, H. Kim, Modified PID control with H∞ loop shaping synthesis for RO desalination plants, Desal. Wat. Treat., 57 (2016) 25421–25434.
  10. J.Z. Assef, J.C. Watters, P.B. Deshpande, I.M. Alatiqi, Advanced control of a reverse osmosis desalination unit, J. Process Control, 7 (1997) 283–289.
  11. A.R. Bartman, P.D. Christofides, Y. Cohen, Nonlinear modelbased control of an experimental reverse-osmosis water desalination system, Ind. Eng. Chem. Res., 48 (2009) 6126–6136.
  12. H.E. Fath, Solar distillation: a promising alternative for water provision with free energy, simple technology and a clean environment, Desalination, 116 (1998) 45–56.
  13. H.B. Bacha, M. Bouzguenda, M.S. Abid, A.Y. Maalej, Modelling and simulation of a water desalination station with solar multiple condensation evaporation cycle technique, Renewable Energy, 18 (1999) 349–365.
  14. M.I Shatat, K. Mahkamov, Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling, Renewable Energy, 35 (2010) 52–61.
  15. H. Müller-Holst, M. Engelhardt, W. Schölkopf, Small-scale thermal seawater desalination simulation and optimization of system design, Desalination, 122 (1999) 255–262.
  16. V.G. Gude, Geothermal source potential for water desalination– current status and future perspective, Renewable Sustainable Energy Rev., 57 (2016) 1038–1065.
  17. A.Z. Al-Garni, W.G. Abdelrahman, Water Desalination System using Geothermal Energy, March 22, 2016, US Patent 9,289,696.
  18. E. Ahmetović, I.E. Grossmannb, Z. Kravanjac, N. Ibrić, Water Optimization in Process Industries, 2016.
  19. C.C. Coello, Evolutionary multi-objective optimization: a historical view of the field, IEEE Comput. Intell. Mag., 1 (2006) 28–36.
  20. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6 (2002) 182–197.
  21. M.T. Jensen, Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms, IEEE Trans. Evol. Comput., 7 (2003) 503–515.
  22. A. Ishizaka, A. Labib, Review of the main developments in the analytic hierarchy process, Expert Syst. Appl., 38 (2011) 14336–14345.
  23. A. Afshari, M. Mojahed, R.M. Yusuff, Simple additive weighting approach to personnel selection problem, Int. J. Innovation Manage. Technol., 1 (2010) 511.
  24. S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015) 80–98.
  25. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudopure fluid thermophysical property evaluation and the opensource thermophysical property library coolprop, Ind. Eng. Chem. Res., 53 (2014) 2498–2508.
  26. E. Sokolov, Flow Machines, Moskva Energoatomizdat, Moscow, 1989 (in Russian).
  27. R.K. Sinnott, G. Towler, Chemical Engineering Design: SI ed., Elsevier, Lincare Hous, Jordan Hill, Oxford OX2 8DP, 2009.
  28. W.D. Seider, J.D. Seader, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, (With CD), John Wiley & Sons, 2009.
  29. W.M. Vatavuk, Updating the CE plant cost index, Chem. Eng., 109 (2002) 62–70.
  30. R.K. Shah, D.P. Sekulic, Fundamentals of Heat Exchanger Design, John Wiley & Sons, Hoboken, New Jersey, 2003.
  31. T.L. Bergman, F.P. Incropera, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2016.
  32. B.M. Jacimovic, S.B. Genic, Thermal Operations and Apparatus, Part 1: Recuperative Heat Exchangers, Faculty of Mechanical Engineering, Belgrade, 2004.
  33. S.B. Genić, B.M. Jaćimović, D. Mandić, D. Petrović, Experimental determination of fouling factor on plate heat exchangers in district heating system, Energy Build., 50 (2012) 204–211.
  34. P. Milanovic, B.M. Jacimovic, S.B. Genic, Experimental measurement of fouling resistance in the heat exchanger of a geothermal heating system, Geothermics, 35 (2006) 79–86.
  35. K.J. Åström, T. Hägglund, Advanced PID Control, ISA – The Instrumentation, Systems and Automation Society, Research Triangle Park, NC 27709, 2006.
  36. G. Zaidner, S. Korotkin, E. Shteimberg, A. Ellenbogen, M. Arad, Y. Cohen, Non Linear PID and Its Application in Process Control, Vol. 26, Convention of Electrical and Electronics Engineers in Israel (IEEEI), IEEE, 2010, pp. 574–577.
  37. Y.X. Su, D. Sun, B.Y. Duan, Design of an enhanced nonlinear PID controller, Mechatronics, 15 (2005) 1005–1024.