References
- Q. Li, H. Li, G.J. Wang, X.C. Wang, Effects of loading rate and
temperature on anaerobic co-digestion of food waste and waste
activated sludge in a high frequency feeding system, looking
in particular at stability and efficiency, Bioresour. Technol., 237
(2018) 231–239.
- W. Qiao, K. Takayanagi, M. Shofie, Q. Niu, H.Q. Yu, Y.-Y. Li,
Thermophilic anaerobic digestion of coffee grounds with
and without waste activated sludge as co-substrate using a
submerged AnMBR: system amendments and membrane
performance, Bioresour. Technol., 150 (2013) 249–258.
- R.M. Dinsdale, F.R. Hawkes, D.L. Hawkes, The mesophilic and
thermophilic anaerobic digestion of coffee waste containing
coffee grounds, Water Res., 30 (1996) 371–377.
- N. Fernandez, C. Forster, A study of the operation of mesophilic
and thermophilic anaerobic filters treating a synthetic coffee
waste, Bioresour. Technol., 45 (1993) 223–227.
- S. Bayr, J. Rintala, Thermophilic anaerobic digestion of pulp
and paper mill primary sludge and co-digestion of primary and
secondary sludge, Water Res., 46 (2012) 4713–4720.
- H.M. Jang, M.-S. Kim, J.H. Ha, J.M. Park, Reactor performance
and methanogenic archaea species in thermophilic anaerobic
co-digestion of waste activated sludge mixed with food
wastewater, Chem. Eng. J., 276 (2015) 20–28.
- P.L. McCarty, D.P. Smith, Anaerobic wastewater treatment,
Environ. Sci. Technol., 20 (1986) 1200–1206.
- H. Nielsen, H. Uellendahl, B. Ahring, Regulation and
optimization of the biogas process: propionate as a key
parameter, Biomass Bioenergy, 31 (2007) 820–830.
- R.E. Speece, S. Boonyakitsombut, M. Kim, N. Azbar, P. Ursillo,
Overview of anaerobic treatment: thermophilic and propionate
implications, Water Environ. Res, 78 (2006) 460–473.
- M. Zamanzadeh, W.J. Parker, Y. Verastegui, J.D. Neufeld,
Biokinetics and bacterial communities of propionate oxidizing
bacteria in phased anaerobic sludge digestion systems, Water
Res., 47 (2013) 1558–1569.
- P. McCarty, F. Mosey, Modelling of anaerobic digestion
processes (a discussion of concepts), Water Sci. Technol., 24
(1991) 17–33.
- A. Visser, I. Beeksma, F. Van der Zee, A. Stams, G. Lettinga,
Anaerobic degradation of volatile fatty acids at different sulphate
concentrations, Appl. Microbiol. Biotechnol., 40 (1993) 549–556.
- W.-M. Wu, R. Hickey, J. Zeikus, Characterization of metabolic
performance of methanogenic granules treating brewery
wastewater: role of sulfate-reducing bacteria, Appl. Environ.
Microbiol., 57 (1991) 3438–3449.
- V. O’Flaherty, P. Lens, B. Leahy, E. Colleran, Long-term
competition between sulphate-reducing and methaneproducing
bacteria during full-scale anaerobic treatment of
citric acid production wastewater, Water Res., 32 (1998) 815–825.
- A. Rinzema, G. Lettinga, The effect of sulphide on the anaerobic
degradation of propionate, Environ. Technol., 9 (1988) 83–88.
- R.E. Speece, Anaerobic biotechnology for industrial wastewater
treatment, Environ. Sci. Technol., 17 (1983) 416A–427A.
- H.M. Jang, J.W. Lee, J.H. Ha, J.M. Park, Effects of organic
loading rates on reactor performance and microbial community
changes during thermophilic aerobic digestion process of
high-strength food wastewater, Bioresour. Technol., 148 (2013)
261–269.
- Q. Li, Y.-Y. Li, W. Qiao, X.C. Wang, K. Takayanagi, Sulfate
addition as an effective method to improve methane
fermentation performance and propionate degradation in
thermophilic anaerobic co-digestion of coffee grounds, milk
and waste activated sludge with AnMBR, Bioresour. Technol.,
185 (2015) 308–315.
- M.H. Isa, I.H. Farooqi, R.H. Siddiqi, Methanogenic activity test
for study of anaerobic processes, Indian J. Environ. Health, 35
(1993) 1–8.
- JSWA (Japanese Standard Methods of the Examination of
Wastewater), Japan Sewage Works Association, Tokyo, Japan,
1997.
- S.G. Shin, G. Han, J. Lim, C. Lee, S. Hwang, A comprehensive
microbial insight into two-stage anaerobic digestion of food
waste-recycling wastewater, Water Res., 44 (2010) 4838–4849.
- W. Qiao, K. Takayanagi, Q. Niu, M. Shofie, Y.Y. Li, Long-term
stability of thermophilic co-digestion submerged anaerobic
membrane reactor encountering high organic loading rate,
persistent propionate and detectable hydrogen in biogas,
Bioresour. Technol., 149 (2013) 92–102.
- S.G. Shin, S. Lee, C. Lee, K. Hwang, S. Hwang, Qualitative
and quantitative assessment of microbial community in batch
anaerobic digestion of secondary sludge, Bioresour. Technol.,
101 (2010) 9461–9470.
- A.I. Qatibi, A. Bories, J.L. Garcia, Effects of sulfate on lactate
and C2-, C3- volatile fatty acid anaerobic degradation by a
mixed microbial culture, Antonie van Leeuwenhoek, 58 (1990)
241–248.
- Y. Yang, Q. Chen, J. Guo, Z. Hu, Kinetics and methane gas
yields of selected C1 to C5 organic acids in anaerobic digestion,
Water Res., 87 (2015) 112–118.
- F.D. Maria, M. Barratta, Boosting methane generation by
co-digestion of sludge with fruit and vegetable waste: internal
environment of digester and methanogenic pathway, Waste
Manage., 43 (2015) 130–136.
- Z. Ren, T. Ward, B. Logan, J. Regan, Characterization of the
cellulolytic and hydrogen‐producing activities of six mesophilic Clostridium species, J. Appl. Microbio., 103 (2007) 2258–2266.
- A. Stams, T. Hansen, Fermentation of glutamate and other
compounds by Acidaminobacter hydrogenoformans gen. nov. sp.
nov., an obligate anaerobe isolated from black mud. Studies
with pure cultures and mixed cultures with sulfate-reducing
and methanogenic bacteria, Arch. Microbiol., 137 (1984)
329–337.
- Y.-J. Lee, C.S. Romanek, G.L. Mills, R.C. Davis, W.B. Whitman,
J. Wiegel, Gracilibacter thermotolerans gen. nov., sp. nov., an
anaerobic, thermotolerant bacterium from a constructed
wetland receiving acid sulfate water, Int. J. Syst. Evol. Micro.,
56 (2006) 2089–2093.