References

  1. Q. Li, H. Li, G.J. Wang, X.C. Wang, Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency, Bioresour. Technol., 237 (2018) 231–239.
  2. W. Qiao, K. Takayanagi, M. Shofie, Q. Niu, H.Q. Yu, Y.-Y. Li, Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: system amendments and membrane performance, Bioresour. Technol., 150 (2013) 249–258.
  3. R.M. Dinsdale, F.R. Hawkes, D.L. Hawkes, The mesophilic and thermophilic anaerobic digestion of coffee waste containing coffee grounds, Water Res., 30 (1996) 371–377.
  4. N. Fernandez, C. Forster, A study of the operation of mesophilic and thermophilic anaerobic filters treating a synthetic coffee waste, Bioresour. Technol., 45 (1993) 223–227.
  5. S. Bayr, J. Rintala, Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge, Water Res., 46 (2012) 4713–4720.
  6. H.M. Jang, M.-S. Kim, J.H. Ha, J.M. Park, Reactor performance and methanogenic archaea species in thermophilic anaerobic co-digestion of waste activated sludge mixed with food wastewater, Chem. Eng. J., 276 (2015) 20–28.
  7. P.L. McCarty, D.P. Smith, Anaerobic wastewater treatment, Environ. Sci. Technol., 20 (1986) 1200–1206.
  8. H. Nielsen, H. Uellendahl, B. Ahring, Regulation and optimization of the biogas process: propionate as a key parameter, Biomass Bioenergy, 31 (2007) 820–830.
  9. R.E. Speece, S. Boonyakitsombut, M. Kim, N. Azbar, P. Ursillo, Overview of anaerobic treatment: thermophilic and propionate implications, Water Environ. Res, 78 (2006) 460–473.
  10. M. Zamanzadeh, W.J. Parker, Y. Verastegui, J.D. Neufeld, Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems, Water Res., 47 (2013) 1558–1569.
  11. P. McCarty, F. Mosey, Modelling of anaerobic digestion processes (a discussion of concepts), Water Sci. Technol., 24 (1991) 17–33.
  12. A. Visser, I. Beeksma, F. Van der Zee, A. Stams, G. Lettinga, Anaerobic degradation of volatile fatty acids at different sulphate concentrations, Appl. Microbiol. Biotechnol., 40 (1993) 549–556.
  13. W.-M. Wu, R. Hickey, J. Zeikus, Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria, Appl. Environ. Microbiol., 57 (1991) 3438–3449.
  14. V. O’Flaherty, P. Lens, B. Leahy, E. Colleran, Long-term competition between sulphate-reducing and methaneproducing bacteria during full-scale anaerobic treatment of citric acid production wastewater, Water Res., 32 (1998) 815–825.
  15. A. Rinzema, G. Lettinga, The effect of sulphide on the anaerobic degradation of propionate, Environ. Technol., 9 (1988) 83–88.
  16. R.E. Speece, Anaerobic biotechnology for industrial wastewater treatment, Environ. Sci. Technol., 17 (1983) 416A–427A.
  17. H.M. Jang, J.W. Lee, J.H. Ha, J.M. Park, Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater, Bioresour. Technol., 148 (2013) 261–269.
  18. Q. Li, Y.-Y. Li, W. Qiao, X.C. Wang, K. Takayanagi, Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR, Bioresour. Technol., 185 (2015) 308–315.
  19. M.H. Isa, I.H. Farooqi, R.H. Siddiqi, Methanogenic activity test for study of anaerobic processes, Indian J. Environ. Health, 35 (1993) 1–8.
  20. JSWA (Japanese Standard Methods of the Examination of Wastewater), Japan Sewage Works Association, Tokyo, Japan, 1997.
  21. S.G. Shin, G. Han, J. Lim, C. Lee, S. Hwang, A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater, Water Res., 44 (2010) 4838–4849.
  22. W. Qiao, K. Takayanagi, Q. Niu, M. Shofie, Y.Y. Li, Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas, Bioresour. Technol., 149 (2013) 92–102.
  23. S.G. Shin, S. Lee, C. Lee, K. Hwang, S. Hwang, Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge, Bioresour. Technol., 101 (2010) 9461–9470.
  24. A.I. Qatibi, A. Bories, J.L. Garcia, Effects of sulfate on lactate and C2-, C3- volatile fatty acid anaerobic degradation by a mixed microbial culture, Antonie van Leeuwenhoek, 58 (1990) 241–248.
  25. Y. Yang, Q. Chen, J. Guo, Z. Hu, Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion, Water Res., 87 (2015) 112–118.
  26. F.D. Maria, M. Barratta, Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: internal environment of digester and methanogenic pathway, Waste Manage., 43 (2015) 130–136.
  27. Z. Ren, T. Ward, B. Logan, J. Regan, Characterization of the cellulolytic and hydrogen‐producing activities of six mesophilic Clostridium species, J. Appl. Microbio., 103 (2007) 2258–2266.
  28. A. Stams, T. Hansen, Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria, Arch. Microbiol., 137 (1984) 329–337.
  29. Y.-J. Lee, C.S. Romanek, G.L. Mills, R.C. Davis, W.B. Whitman, J. Wiegel, Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic, thermotolerant bacterium from a constructed wetland receiving acid sulfate water, Int. J. Syst. Evol. Micro., 56 (2006) 2089–2093.