References
- G. Li, S. Gao, G. Zhang, X. Zhang, Enhanced adsorption of
phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides, Chem. Eng. J., 235 (2014) 124–131.
- Y. Li, Q. Xie, Q. Hu, C. Li, Z. Huang, X. Yang, H. Guo, Surface
modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe)
derived from metal-organic frameworks for enhanced selective
removal of phosphates from aqueous solution, Sci. Rep., 6
(2016) 30651–30662.
- N. Mehrabi, M. Soleimani, H. Sharififard, M. Madadi Yeganeh,
Optimization of phosphate removal from drinking water with
activated carbon using response surface methodology (RSM),
Desal. Wat. Treat., 57 (2016) 15613–15618.
- M. Arshadi, J. Etemad Gholtash, H. Zandi, S. Foroughifard,
Phosphate removal by a nano-biosorbent from the synthetic
and real (Persian Gulf) water samples, RSC. Adv., 5 (2015)
43290–43302.
- A. Alshameri, C. Yan, X. Lei, Enhancement of phosphate
removal from water by TiO2/Yemeni natural zeolite: preparation,
characterization and thermodynamic, Microporous Mesoporous
Mater., 196 (2014) 145–157.
- Y.-J. Tu, C.-F. You, Phosphorus adsorption onto green
synthesized nano-bimetal ferrites: equilibrium, kinetic and
thermodynamic investigation, Chem. Eng. J., 251 (2014)
285–292.
- A.F. de Sousa, T.P. Braga, E.C.C. Gomes, A. Valentini,
E. Longhinotti, Adsorption of phosphate using mesoporous
spheres containing iron and aluminum oxide, Chem. Eng. J.,
210 (2012) 143–149.
- J. Lu, D. Liu, J. Hao, G. Zhang, B. Lu, Phosphate removal from
aqueous solutions by a nano-structured Fe–Ti bimetal oxide
sorbent, Chem. Eng. Res. Des., 93 (2015) 652–661.
- L. Yan, K. Yang, R. Shan, T. Yan, J. Wei, S. Yu, H. Yu, B. Du,
Kinetic, isotherm and thermodynamic investigations of
phosphate adsorption onto core–shell Fe3O4@LDHs composites
with easy magnetic separation assistance, J. Colloid Interface
Sci., 448 (2015) 508–516.
- H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao, M. Shu, Synthesis of
novel nanocomposite Fe3O4/ZrO2/chitosan and its application
for removal of nitrate and phosphate, Appl. Surf. Sci., 284 (2013)
942–949.
- E.M. van Voorthuizen, A. Zwijnenburg, M. Wessling, Nutrient
removal by NF and RO membranes in a decentralized sanitation
system, Water Res., 39 (2005) 3657–3667.
- https://www.sswm.info/content/membrane-filtration (accessed
27 January 2018).
- M. Arshadi, A.R. Faraji, M. Mehravar, Dye removal from
aqueous solution by cobalt-nano particles decorated aluminum
silicate: kinetic, thermodynamic and mechanism studies,
J. Colloid Interface Sci., 440 (2015) 91–101.
- L. Filipponi, D. Sutherland, Nanotechnologies: Principles,
Applications, Implications and Hands-Activities, European
Commission, Luxembourg, 2013.
- L. Cui, L. Hu, X. Guo, Y. Zhang, Y. Wang, Q. Wei, B. Du, Kinetic,
isotherm and thermodynamic investigations of Cu2+ adsorption
onto magnesium hydroxyapatite/ferroferric oxide nanocomposites
with easy magnetic separation assistance, J. Mol.
Liq., 198 (2014) 157–163.
- A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat,
M.S. Uddin, Carboxymethyl-β-cyclodextrin conjugated magnetic
nanoparticles as nano-adsorbents for removal of copper ions:
synthesis and adsorption studies, J. Hazard. Mater., 185 (2011)
1177–1186.
- R. Davarnejad, P. panahi, Cu (II) removal from aqueous
wastewaters by adsorption on the modified Henna with Fe3O4
nanoparticles using response surface methodology, Sep. Purif.
Technol., 158 (2016) 286–292.
- M.A. Zulfikar, S. Afrita, D. Wahyuningrum, M. Ledyastuti,
Preparation of Fe3O4-chitosan hybrid nano-particles used for
humic acid adsorption, Environ. Nanotechnol. Monit. Manage.,
6 (2016) 64–75.
- J. Yang, Q. Zeng, L. Peng, M. Lei, H. Song, B. Tie, J. Gu, La
EDTA coated Fe3O4 nanomaterial: Preparation and application
in removal of phosphate from water, J. Environ. Sci., 25 (2013)
413–418.
- Q. Gao, F. Chen, J. Zhang, G. Hong, J. Ni, X. Wei, D. Wang,
The study of novel Fe3O4@γ-Fe2O3 core/shell nanomaterials
with improved properties, J. Magn. Magn. Mater., 321 (2009)
1052–1057.
- G. Zhang, H. Liu, R. Liu, J. Qu, Removal of phosphate from
water by a Fe–Mn binary oxide adsorbent, J. Colloid Interface
Sci., 335 (2009) 168–174.
- F. Long, J.L. Gong, G.M. Zeng, L. Chen, X.Y. Wang, J.H. Deng,
Q.Y. Niu, H.Y. Zhang, X.R. Zhang, Removal of phosphate from
aqueous solution by magnetic Fe–Zr binary oxide, Chem. Eng.
J., 171 (2011) 448–455.
- S.-Y. Yoon, C.-G. Lee, J.-A. Park, J.-H. Kim, S.-B. Kim, S.-H. Lee,
J.-W. Choi, Kinetic, equilibrium and thermodynamic studies
for phosphate adsorption to magnetic iron oxide nanoparticles,
Chem. Eng. J., 236 (2014) 341–347.
- L. Lai, Q. Xie, L. Chi, W. Gu, D. Wu, Adsorption of phosphate
from water by easily separable Fe3O4@SiO2 core/shell magnetic
nanoparticles functionalized with hydrous lanthanum oxide,
J. Colloid Interface Sci., 465 (2016) 76–82.
- R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding,
D.G. Wei, Preparation, characterization and application of
Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull.,
43 (2008) 2457–2468.
- R.Y. Hong, J.H. Li, X. Cao, S.Z. Zhang, G.Q. Di, H.Z. Li, D.G. Wei,
On the Fe3O4/Mn1−xZnxFe2O4 core/shell magnetic nanoparticles,
J. Alloys Compd., 480 (2009) 947–953.
- R.P. Kralchevska, R. Prucek, J. Kolařík, J. Tuček, L. Machala,
J. Filip, V.K. Sharma, R. Zbořil, Remarkable efficiency of
phosphate removal: ferrate(VI)-induced in situ sorption on
core-shell nanoparticles, Water Res., 103 (2016) 83–91.
- L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for
the Examination of Water and Wastewater, 20th ed., American
Public Health Association, 1999.
- D.C. Montgomery, Design and Analysis of Experiments, fifth
ed., John Wiley & Sons, New York, 2001.
- http://www.itl.nist.gov/div898/handbook/ (accessed 27 January
2018).
- C. Wang, S. Yang, H. Chang, Y. Peng, J. Li, Structural effects of
iron spinel oxides doped with Mn, Co, Ni and Zn on selective
catalytic reduction of NO with NH3, J. Mol. Catal. A: Chem., 376
(2013) 13–21.
- S. Rajesh, S. Rajakarunakaran, R. Sudhakara Pandian, Modeling
and optimization of Sliding specific wear and coefficient of
friction of aluminum based red mud metal matrix composite
using Taguchi method and response surface methodology,
Mater. Phys. Mech., 15 (2012) 150–166.
- M. Feilizadeh, M. Rahimi, S.M. Esmaeil Zakeri, N. Mahinpey,
M. Vossoughi, M. Qanbarzadeh, Individual and interaction
effects of operating parameters on the photocatalytic
degradation under visible light illumination: response surface
methodological approach, Can. J. Chem. Eng., 95 (2017) 1228–1235.
- S.H. Kareem, A.A. Ati, M. Shamsuddin, S.L. Lee, Nanostructural,
morphological and magnetic studies of PEG/Mn(1_x)Zn(x)Fe2O4
nanoparticles synthesized by co-precipitation, Ceram. Int., 41
(2015) 11702–11709.
- H. Yang, Q. Liu, S. Masse, H. Zhang, L. Li, T. Goradin,
Hierarchically-organized, well-dispersed hydroxyapatite-coated
magnetic carbon with combined organics and inorganics
removal properties, Chem. Eng. J., 275 (2015) 152–159.
- S. Xing, Z. Zhou, Z. Ma, Y. Wu, Characterization and reactivity
of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue
discoloration with H2O2, Appl. Catal., B, 107 (2011) 386–392.
- L. Liu, X. Zhang, R. Wang, J. Liu, Facile synthesis of Mn2O3
hollow and core–shell cube-like nanostructures and their
catalytic properties, Superlattices Microstruct., 72 (2014) 219–229.
- I.G. Morozov, O.V. Belousova, D. Ortega, M.K. Mafina, M.V.
Kuzntcov, Structural, optical, XPS and magnetic properties of
Zn particles capped by ZnO nanoparticles, J. Alloys Compd.,
633 (2015) 237–245.
- Z.-W. Wu, S.-L. Tyan, H.-H. Chen, J.-C.-A. Huang, Y.-C. Huang,
C.-R. Lee, T.-S. Mo, Temperature-dependent photoluminescence
and XPS study of ZnO nanowires grown on flexible Zn foil via
thermal oxidation, Superlattices Microstruct., 107 (2017) 38–43.
- F. Zhuang, R. Tan, W. Shen, X. Zhang, W. Xu, W. Song,
Monodisperse magnetic hydroxyapatite/Fe3O4 microspheres for
removal of lead(II) from aqueous solution, J. Alloys Compd.,
637 (2015) 531–537.
- A. Sarkar, S. Kanti Biswas, P. Pramanik, Design of a new
nanostructure comprising Mesoporous ZrO2 shell and
magnetite core (Fe3O4@mZrO2) and study of its phosphate ion
separation efficiency, J. Mater. Chem., 20 (2010) 4417–4424.