References

  1. C. Baird, M. Cann, Environmental Chemistry, 3rd ed., W.H. Freeman and Company, New York, 2005.
  2. B.M.W.P.K. Amarasinghe, R.A. Williams, Tea waste as a low cost adsorbent for the removal of Cu and Pb from waste water, J. Chem. Eng., 132 (2007) 299–309.
  3. F.E. Nady, M.M. Atta, Toxicity and bioaccumulation of heavy metals to some marine biota from the Egyptian coastal water, J. Environ. Sci. Health, 31 (1996) 1529–1545.
  4. M. Zentkova, J. Kovac, A. Zentko, A. Hudak, A. Kosturiak, Magnetic properties of Fe, Co, Ni complexes of 3-semicarbazone isatine and 3-oxime isatine complexes, Trans. IEEE Magn., 30 (1994) 1120–1121.
  5. N.P. Cheremisinoff, Handbook of Water and Wastewater Treatment Technologies, Butterworth Heinemann, USA, 2002.
  6. M.A. Barakat, New trends in removing heavy metals from industrial waste water, Arab. J. Chem., 4 (2011) 361–377.
  7. R. Munter, Industrial wastewater treatment, available from: http://www.balticuniv.uu.se/index.php/component/docman/doc_download/286-water-use-and-management-19-industrialwastewater-treatment (2007) (Accessed 24 December 2016).
  8. C.V. Philippe, R. Bianchi, W. Verstraete, Treatment and reuse of waste water from the textile wet-processing industry, J. Chem. Technol. Biotechnol., 72 (1998) 289–302.
  9. L.B.L. Lim, N. Priyantha, D.T.B. Tennakoon, T. Zehra, Sorption characteristics of peat of Brunei Darussalam (II): Interaction of aqueous Cu(II) species with raw and processed peat, Int. J. Ecotechnol. Res., 17 (2013) 45–49.
  10. A. Visekruna, A. Strkalj, L.M. Pajc, The holistic approach to environment, Portal Scient. J. Croatea, 11 (2011) 29–37.
  11. M.I. Ansari, F. Masood, A. Malik, Bacterial biosorption: A technique for remediation of heavy metals, in Microbes and Microbial Technology: Agricultural and Environmental Applications, 2011, pp. 283–319.
  12. D.J. Boron, E.W. Evans, J.M. Peterson, An overview of peat research, utilization, and environmental considerations, Int. J. Coal Geol., 8 (1987) 1–31.
  13. C. Tarnocai, V. Stolbovoy, Peatlands, I.P. Martini, A.M. Cortizas, W. Chesworth Eds., Evolution and Records of Environmental and Climate Changes, Elsevier, Chapter 2, 2006.
  14. S.E. Page, J.O. Rieley, R. Wust, Peatlands, I.P. Martini, A.M. Cortizas, W. Chesworth Eds., Evolution and Records of Environmental and Climate Changes, Elsevier, Chapter 7, 2006, pp. 145–172.
  15. R.F. Hammond, Peat of Ireland, Soil Survey Bulletin, 2nd ed., 35, 1978, pp. 17–21.
  16. P.J. Silk, G.C. lonergan, T.L. Arsenault, C.D. Boyle, Evidence on natural organochlorine formation in peat bogs, Chemosphere, 35 (1997) 2865–2880.
  17. M.U.S. Wickramasooriya, Kinetics and equilibrium aspects of interaction of heavy metal ions and peat in modified forms, M.Phil. Thesis, University of Peradeniya, 2016.
  18. Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions on to peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141 (2002) 1–33.
  19. H. Qiu, L. Lv, B. Pan, Q.J. Zhang, W. Zhang, Q.X. Zhang, J. Zhejiang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A, 10 (2009) 716–724.
  20. B.Y.M. Bueno, M.L. Torem, F. Molina, L.M.S. Mesquita, Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies, Miner. Eng., 21 (2008) 65–75.
  21. U.J. Etim, S.A. Umoren, U.M. Eduok, Coconut coir dust as a low cost adsorbent for the removal of cationic die from aqueous solution, J. Saudi Chem. Soc., 20 (2016) S67–S76.
  22. C. Appel, L.Q. Ma, R.D. Rhue, E. Kennelley, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113 (2003) 77–93.
  23. L.S. Chan, W.H. Cheung, S.J. Allen, G. McKay, Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon, Chinese J. Chem. Eng., 20 (2012) 535–542.
  24. I.K. Warnakula, Enhancement of Cu(II) and Cr(III) removal by humic acid extracted from Muthurajawela peat, M.Sc. Thesis, University of Peradeniya, 2016.
  25. M. Donohue, A new IUPAC classification of adsorption isotherms, Available from: http://www.nigelworks.com/mdd/ PDFs/NewClass.pdf (2017) (Accessed 8 January, 2017).
  26. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zi(II) onto phosphoric acid modified rice husk, Iosr. J. App. Chem., 3 (2012) 38–45.
  27. Z. Liu, L. Zhou, P. Wei, K. Zeng, C. Wen, H. Lan, Competitive adsorption of heavy metal ions on peat, J. China Univ. Min. Techno., 18 (2008) 255–260.
  28. T. Viraraghavan, M.M. Dronamraju, Removal of copper, nickel and zinc from wastewater by adsorption using peat, J. Environ. Sci. Health. Part A: Environ. Sci. Eng. Toxicol., 28 (1993). 1261–1276.
  29. Y.S. Ho, D.A.J. Wase, C.F. Forster, Batch Nickel removal from aqueous solution by sphagnum moss peat, Wat. Res., 29 (1995) 1327–1332.
  30. P. Bartczak, M. Norman, L. Klapiszewski, N. Karwańska, M. Kawalec, M. Baczyńska, M. Wysokowski, J. Zdarta, F. Ciesielczyk, T. Jesionowski, Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study, Arab. J. Chem., 11 (2018) 1209–1222.