References

  1. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010) 6503–6570.
  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  3. S.K. Li, F.Z. Huang, Y. Wang, Y.H. Shen, L.G. Qiu, A.J. Xie, S.J. Xu, Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants, J. Mater. Chem., 21 (2011) 7459–7466.
  4. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76–80.
  5. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 25 (2009) 10397–10401.
  6. Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visiblelight photocatalytic H2-production activity of graphene/g-C3N4 composites, J. Phys. Chem. C, 115 (2011) 7355–7363.
  7. M. Groenewolt, M. Antonietti, Synthesis of g‐C3N4 nanoparticles in mesoporous silica host matrices, Adv. Mater., 17 (2005) 1789–1792.
  8. W. Cui, J.Y. Li, F. Dong, Y.J. Sun, G.M. Jiang, W.L. Cen, S.C. Lee, Z.B. Wu, Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride, Environ. Sci. Technol., 51 (2017) 10682–10690.
  9. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metalfree catalysts, J. Mater. Chem., 18 (2008) 4893–4908.
  10. J. Zhang, M. Zhang, R.Q. Sun, X.C. Wang, A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions, Angew. Chem., 124 (2012) 10292–10296.
  11. Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4 (2012) 5300–5303.
  12. W. Cui, J.Y. Li, W.L. Cen, Y.J. Sun, S.C. Lee, F. Dong, Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: enhanced photocatalysis and reaction mechanism, J. Catal., 352 (2017) 351–360.
  13. G.M. Jiang, X.W. Li, M.N. Lan, T. Shen, X.S. Lv, F. Dong, S. Zhang, Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: enhanced visible-light-response photocatalytic NO removal and reaction pathway, Appl. Catal. B: Environ., 205 (2017) 532–540.
  14. X.Y. Li, Y.H. Pi, L.Q. Wu, Z. Lin, J. Xiao, Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-iron terephthalate metal-organic framework for MB degradation, Appl. Catal. B: Environ., 202 (2017) 653–663.
  15. S.W. Cao, Y.P. Yuan, J. Fang, M.M. Shahjamali, F.Y.C. Boey, J. Barber, S.C.J. Loo, C. Xue, In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation, Int. J. Hydrogen Energy, 38 (2013) 1258–1266.
  16. W. Liu, M.L. Wang, C.X. Xu, S.F. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, Chem. Eng. J., 209 (2012) 386–393.
  17. L. Ge, C.C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B: Environ., 108 (2011) 100–107.
  18. X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution‐processed twodimensional MoS2 nanosheets: preparation, hybridization, and applications, Angew. Chem. Int. Edit., 55 (2016) 8816–8838.
  19. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105 (2010) 136805.
  20. Y. Zhang, X. Bo, A. Nsabimana, C. Luhana, G. Wang, H. Wang, M. Li, L.P. Guo, Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection, Biosens. Bioelectron., 53 (2014) 250–256.
  21. W.K. Jo, T. Adinaveen, J.J. Vijaya, N.C.S. Selvam, Synthesis of MoS2 nanosheet supported Z-scheme TiO2/g-C3N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants, RSC Adv., 26 (2016) 10487–10497.
  22. G. Liao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation, J. Mater. Chem., 22 (2012) 2721–2726.
  23. P. Chen, T.Y. Xiao, Y.H. Qian, S.S. Li, S.H. Yu, A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity, Adv. Mater., 25 (2013) 3192–3196.
  24. S. Ma, J. Xie, J.Q. Wen, K.L. He, X. Li, W. Liu, X.C. Zhang, Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation, Appl. Surf. Sci., 391 (2017) 580–591.
  25. X. Li, J. Zhang, L. Shen, Y.M. Ma, W.W. Lei, Q.L. Cui, G.T. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Appl. Phys. A: Mater., 94 (2009) 387–392.
  26. F. Dong, Z. Zhao, T. Xiong, Z. Ni, W.D. Zhang, Y.J. Sun, W.K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, ACS Appl. Mat. Interfaces, 5 (2013) 11392–11401.
  27. S. Liu, X. Zhang, H. Shao, J. Xu, F.Y. Chen, Y. Feng, Preparation of MoS2 nanofibers by electrospinning, Mater. Lett., 73 (2012) 223–225.
  28. Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity, Adv. Mater., 25 (2013) 6291–6297.
  29. J. Low, S. Cao, J. Yu, S. Wageh, Two-dimensional layered composite photocatalysts, Chem. Commun., 50 (2014) 10768–10777.
  30. J. Li, E.Z. Liu, Y.N. Ma, X.Y. Hu, J. Wan, L. Sun, J. Fan, Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity, Appl. Surf. Sci., 364 (2016) 694–702.
  31. X. Yang, Z. Chen, J. Xu, H. Tang, K.M. Chen, Y. Jiang, Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation, ACS Appl. Mater. Interfaces, 7 (2015) 15285–15293.
  32. C. Altavilla, M. Sarno, P. Ciambelli, A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W), Chem. Mater., 23 (2011) 3879–3885.
  33. P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Photocatalytic hydrogen production from aqueous Na2S + Na2SO3 solution with B-doped ZnO, ACS Sustain. Chem. Eng., 1 (2013) 982–988.
  34. Q.Y. Lin, L. Li, S.J. Liang, M.H. Liu, J.H. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal. B: Environ., 163 (2015) 135–142.
  35. Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B: Environ., 180 (2016) 663–673.
  36. J.F. Zhang, Y.F. Hu, X.L. Jiang, S.F. Chen, S.G. Meng, X.L. Fu, Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, J. Hazard. Mater., 208 (2014) 713–722.
  37. B. Weng, X. Zhang, N. Zhang, Z. Tang, Y. Xu, Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: synthesis, formation mechanism, and photocatalytic application, Langmuir, 31 (2015) 4314–4322.