References

  1. C. Han, Z. Wang, W. Yang, Q. Wu, H. Yang, X. Xue, Effects of pH on phosphorus removal capacities of basic oxygen furnace slag, Ecol. Eng., 89 (2016) 1–6.
  2. Y.V. Nancharaiah, M.S. Venkata, P.N.L. Lens, Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems, Bioresour. Technol., 215 (2016) 173–185.
  3. D.D. Nguyen, H.H. Ngo, W. Guo, T.T. Nguyen, S.W. Chang, A. Jang, Y.S. Yoon, Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater?, Sci. Total Environ., 549–564 (2016) 549–564.
  4. J. Rai, D. Kumar, L.K. Pandey, A. Yadav, J.P. Gaur, Potential of cyanobacterial biofilms in phosphate removal and biomass production, J. Environ. Manage., 177 (2016) 138–144.
  5. A. Oehmen, R.J. Zeng, Z. Yuan, Modeling the aerobic metabolism of polyphosphate-accumulating organisms enriched with propionate as a carbon source, Water Environ. Res., 79 (2007) 2477–2486.
  6. T. Panswad, A. Doungchai, J. Anotai, Temperature effect on microbial community of enhanced biological phosphorus removal system, Water Res., 37 (2003) 409–415.
  7. S.H. Lee, R. Kumar, B.H. Jeon, Struvite precipitation under changing ionic conditions in synthetic wastewater: experiment and modeling, J. Colloid. Int. Sci., 474 (2016) 93–102.
  8. E. Oguz, Removal of phosphate from aqueous solution with blast furnace slag, J. Hazard. Mater., 114 (2004) 131–137.
  9. N.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media, Chemosphere, 119 (2015) 1353–1360.
  10. P. Loganathan, S. Vigneswaran, J. Kandasamy, N.S. Bolan, Removal and recovery of phosphate from water using sorption, Crit. Rev. Environ. Sci. Technol., 44 (2014) 847–907.
  11. P. Kumar, I. Mehrotra, T. Viraraghavan, Temperature response of biological phosphorus removing activated return sludge, J. Environ. Eng., 124 (1998) 192–196.
  12. Egyptian Code of Environmental Regulations Appendix No. (1), (1982) (4/1994) 106–108.
  13. B.C. Ahmed, P.K. Ghosh, G. Gajalakshmi, Total dissolved solids removal by electrochemical ion exchange (EIX) process, Electrochim. Acta., 54 (2008) 474–483.
  14. B.K. Gökben, U.M. Aysegül, T. Ilhami, Phragmites australis: An alternative biosorbent for basic dye removal, Ecol. Eng., 86 (2016) 85–94.
  15. J. Srivastava, S.J.S. Kalra, R. Naraian, Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel, Appl Water Sci., 4 (2014) 193–202.
  16. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum [J], J Am Chem Soc., 40 (1918) 1361−1368.
  17. H. Freundlich, Adsorption in solution [J], Phys Chem Soc., 40 (1906) 1361−1368.
  18. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  19. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J Sanit Eng Div Am. Soc. Civ. Eng., 89 (1963) 31−60.
  20. M.G. Alalm, M. Nasr, S. Ookawara, Assessment of a novel spiral hydraulic flocculation/sedimentation system by CFD simulation fuzzy inference system and response surface methodology, Sep. Purif. Technol., 169 (2016) 137–150.
  21. H. Sutcu, Pyrolysis of Phragmites australis and characterization of liquid and solid products, J. Ind. Eng. Chem., 14 (2008) 573–577.
  22. A.J. Romero-Anaya, M.A. Lillo-Roidenas, A. Linares-Solano, Factors governing the adsorption of ethanol on spherical activated carbons, Carbon, 83 (2015) 240–249.
  23. V. Nair, A. Panigrahy, R. Vinu, Development of novel chitosan– lignin composites for adsorption of dyes and metal ions from wastewater, Chem. Eng. J., 254 (2014) 491–502.
  24. H. Yin, Y. Yun, Y. Zhang, C. Fan, Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite, J. Hazard. Mater., 198 (2011) 362–369.
  25. Y. Zhang, X. Kou, H. Lu, X. Lv, The feasibility of adopting zeolite in phosphorus removal from aqueous solutions, Desal. Water Treat., 52 (2014) 4298–4304.
  26. A.J. Maher, D. Hiba, Z. Nareman, E. Nadia, Reducing organic pollution of wastewater from milk processing industry by adsorption on marlstone particles, Int. J. Thermal Environ. Eng., 15 (2017) 57–61.
  27. A.L. Ahmad, S. Sumathi, B.H. Hameed, Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: A comparative study, Chem. Eng. J., 108 (2005) 179–185.
  28. C. Vohla, E. Poldvere, A. Noorvee, V. Kuusemets, U. Mander, Alternative filter media for phosphorus removal in a horizontal subsurface flow constructed wetland, J. Environ. Sci. Health A, 40 (2005) 1251–1264.
  29. M.T.G. Vianna, M. Marques, L.C. Bertolino, Sun coral powder as adsorbent: Evaluation of phosphorus removal in synthetic and real wastewater, Ecol. Eng., 97 (2016) 13–22.
  30. S. Wang, L. Kong, J. Long, M. Su, Z. Diao, X. Chang, D. Chen, G. Song, K. Shih, Adsorption of phosphorus by calciumflour biochar: Isotherm, kinetic and transformation studies, Chemosphere, 195 (2018) 666–672.
  31. M. Shams, M.H. Dehghani, R. Nabizadeh, A. Mesdaghinia, M. Alimohammadi, A.A. Najafpoor, Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework- 8: Modeling, mechanical agitation versus sonication, J. Molec. Liq., 224 (2016) 151–157.
  32. K. Adam, T. Krogstad, F.R.D. Suliman, P.D. Jenssen, Phosphorous sorptionby Filtralite-PTM—small-scale box experiment, J. Environ. Sci. Health A, 40 (2005) 1239–1250.
  33. T. Zhu, P.D. Jenssen, T. Mahlum, T. Krogstad, Phosphorus sorption and chemicalcharacteristics of lightweight aggregates (LWA)—potential filter media intreatment wetlands, Water Sci. Technol., 35 (1997) 103–108.
  34. M. Ozacar, Contact time optimization of two-stage batch adsorber designusing second-order kinetic model for the adsorption of phosphate onto alunite, J. Hazard. Mater. B, 137 (2006) 218–225.
  35. C.A. Prochaska, A.I. Zouboulis, Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate, Ecol. Eng., 26 (2006) 293–303.
  36. P. Molle, A. Lienard, A. Grasmick, A. Iwema, A. Kabbabi, Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands, Water Sci. Technol., 51 (2005) 193–203.
  37. L. Johansson, Industrial by-products and natural substrata as phosphorus sorbents, Environ. Technol., 20 (1999a) 309–316.
  38. K.V. Heal, P.L. Younger, K.A. Smith, S. Glendinning, P. Quinn, K.E. Dobbie, Novel use of ochre from mine water treatment plants to reduce point and diffuse phosphorus pollution, Land Contam. Reclam., 11 (2003) 145–152.
  39. K.V. Heal, K.E. Dobbie, E. Bozika, H. McHaffie, A.E. Simpson, K.A. Smith, Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment, Water Sci. Technol., 51 (2005) 275–282.
  40. J. Chen, H. Kong, W. Wu, X. Chen, D. Zhang, Z. Sun, Phosphate immobilization from aqueous solution by fly ashes in relation to their composition, J. Hazard. Mater. B, 139 (2007) 293–300.
  41. E.A. Korkusuz, M. Beklioglu, G.N. Demirer, Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application, Bioresour. Technol., 98 (2007) 2089–2101.
  42. W.W. Huang, S.B. Wang, Z.H. Zhu, L. Li, X.D. Yao, V. Rudolph, F. Haghseresht, Phosphate removal from wastewater using red mud, J. Hazard. Mater., 158 (2008) 35–42.
  43. M. Brink, E.G. Achigan-Dako, Plant Resources of Tropical Africa 16, Fibers, PROTA Foundation/CTA, Wageningen, Netherlands, 2012.
  44. J.F. Köbbing, N. Thevs, S. Zerbe, Cutting of Phragmites australis as a lake restoration technique: Productivity calculation and nutrient removal in Wuliangsuhai Lake, northern China, Sciences in Cold and Arid Regions, 8 (2016) 35–47.
  45. A.D. Patwardhan, Industrial wastewater treatment, Mumbai, 2008.