References

  1. M. Visa, F. Pricop, A. Duta, Sustainable treatment of wastewaters resulted in the textile dyeing industry, Clean Technol. Environ. Policy, 13 (2011) 855–861.
  2. F.V. De Andrade, G.M. De Lima, R. Augusti, M.G. Coelh, J.D. Ardisson, O.B. Romero, A versatile approach to treat aqueous residues of textile industry: the photocatalytic degradation of Indigo Carmine dye employing the autoclaved cellular concrete/Fe2O3 system, Chem. Eng. J., 180 (2012) 25–31.
  3. M. Mohajerani, M. Mehrvar, F. Ein-Mozaffari, Correlation and prediction of azo dye degradation by nonlinear least-square regression in combined ozonation and ultrasonolysis processes, Water Qual. Res. J. Can., 46 (2011) 250–258.
  4. M. Mohajerani, M. Mehrvar, F. Ein-Mozaffari, Degradation of aqueous methylene blue using an external loop airlift sonophotoreactor: statistical analysis and optimization, J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng., 51 (2016) 722–735.
  5. M. Nasirian, M. Mehrvar, Modification of TiO2 to enhance photocatalytic degradation of organics in aqueous solutions, J. Environ. Chem. Eng., 4 (2016) 4072–4082.
  6. M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: effects of calcination temperature and UV-assisted thermal synthesis, J. Environ. Manage., 196 (2017) 487–498.
  7. D. Hamad, M. Mehrvar, R. Dhib, Experimental study of polyvinyl alcohol degradation in aqueous solution by UV/H2O2 process, Polym. Degrad. Stabil., 103 (2014) 75–82.
  8. D. Hamad, R. Dhib, M. Mehrvar, Photochemical degradation of aqueous polyvinyl alcohol in a continuous UV/H2O2 process: experimental and statistical analysis, J. Polym. Environ., 24 (2016) 72–83.
  9. A. Mowla, M. Mehrvar, R. Dhib, Combination of sonophotolysis and aerobic activated sludge processes for treatment of synthetic pharmaceutical wastewater, Chem. Eng. J., 255 (2014) 411–423.
  10. C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: modeling, optimization, and cost-effectiveness analysis, J. Environ. Manage., 182 (2016) 651–666.
  11. C.F. Bustillo-Lecompte, M. Knight, M. Mehrvar, Assessing the performance of UV/H2O2 as a pretreatment process in TOC removal of an actual petroleum refinery wastewater and its inhibitory effects on activated sludge, Can. J. Chem. Eng., 93 (2015) 798–807.
  12. C.F. Bustillo-Lecompte, S. Ghafoori, M. Mehrvar, Photochemical degradation of an actual slaughterhouse wastewater by continuous UV/H2O2 photoreactor with recycle, J. Environ. Chem. Eng., 4 (2016) 719–732.
  13. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  14. S.I. Shah, W. Li, C.P. Huang, O. Jung, C. Ni, Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles, Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 6482–6486.
  15. L. Zhang, T. Kanki, N. Sano, A. Toyoda, Development of TiO2 photocatalyst reaction for water purification, Sep. Purif. Technol., 31 (2003) 105–110.
  16. J. Bandara, R.A.S.S. Ranasinghe, The effect of MgO coating on photocatalytic activity of SnO2 for the degradation of chlorophenol and textile colorants; the correlation between the photocatalytic activity and the negative shift of flatband potential of SnO2, Appl. Catal., A, 319 (2007) 58–63.
  17. Y. Cao, H. Tan, T. Shi, T. Tang, J. Li, Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water, J. Chem. Technol. Biotechnol., 83 (2008) 546–552.
  18. B. Gao, T.M. Lim, D.P. Subagio, T.T. Lim, Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A, Appl. Catal., A, 375 (2010) 107–115.
  19. E. Grabowska, J. Reszczyńska, A. Zaleska, Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review, Water Res., 46 (2012) 5453–5471.
  20. L.G. Devi, R. Kavitha, A review on nonmetal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal., B, 140–141 (2013) 559–587.
  21. Y. Kim, K. Jung, J.Y. Hwang, S. Ahn, K.Y. Kwon, Photocatalytic property of nitrogen and nickel codoped titanium oxides, Bull. Korean Chem. Soc., 37 (2016) 1768–1771.
  22. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol., C, 25 (2015) 1–29.
  23. D. Sudha, P. Sivakumar, Review on the photocatalytic activity of various composite catalysts, Chem. Eng. Process., 97 (2015) 112–133.
  24. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
  25. P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  26. Y. Shaogui, Q. Xie, L. Xinyong, L. Yazi, C. Shuo, C. Guohua, Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation, Phys. Chem. Chem. Phys., 6 (2004) 659–664.
  27. H. Zhang, X. Wu, Y. Wang, X. Chen, Z. Li, T. Yu, J. Ye, Z. Zou, Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties, J. Phys. Chem. Solids, 68 (2007) 280–283.
  28. T.K. Ghorai, M. Chakraborty, P. Pramanik, Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis, J. Alloys Compd., 509 (2011) 8158–8164.
  29. M. Nasirian, Y.P. Lin, C.F. Bustillo-Lecompte, M. Mehrvar, Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review, Int. J. Environ. Sci. Technol., 15 (2018) 2009–2032.
  30. S.K. Mohapatra, S. Banerjee, M. Misra, Synthesis of Fe2O3/TiO2 nanorod–nanotube arrays by filling TiO2 nanotubes with Fe, Nanotechnology, 19 (2008) 315601–315607.
  31. Y. Jiaying, T. Jie, Z. Xiuhui, J. Xinyu, J. Feipeng, Y. Jingang, Synthesis, characterization and photocatalytic activities of a novel Eu/TiO2/GO composite, and its application for enhanced photocatalysis of methylene blue, Nanosci. Nanotechnol. Lett., 9 (2017) 1622–1631.
  32. M. Reli, P. Huo, M. Šihor, N. Ambrožová, I. Troppová, L. Matějová, J. Lang, L. Svoboda, P. Kust́rowski, M. Ritz, P. Praus, K. Kocí, Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2,and for photocatalytic decomposition of N2O, J. Phys. Chem., 120 (2016) 8564–8573.
  33. S. Ranjan, D.D. Sasselov, Influence of the UV environment on the synthesis of prebiotic molecules, Astrobiology, 16 (2016) 68–88.
  34. A.P. Surzhikov, E.A. Vasendina, E.N. Lysenko, E.V. Nikolaev, Kinetics of phase formation in a Li2CO3-TiO2-Fe2O3 system during radiation-thermal synthesis, Inorg. Mater., 5 (2014) 102–106.
  35. G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, S. Shekoohyian, Comparing the efficacy of VUV and UVC/S2O82− advanced oxidation processes for degradation and mineralization of cyanide in wastewater, Chem. Eng. J., 294 (2016) 273–280.
  36. B. Tryba, A.W. Morawski, M. Inagaki, M. Toyoda, Effect of the carbon coating in Fe-C-TiO2 photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process, Chemosphere, 64 (2006) 1225–1232.
  37. N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Šiller, Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method, Sci. Iran, 20 (2013) 1018–1022.
  38. S. Dai, Y. Wu, T. Sakai, Z. Du, H. Sakai, M. Abe, Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton, Nanoscale Res. Lett., 5 (2010) 1829–1835.
  39. B. Pal, M. Sharon, G. Nogami, Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties, Mater. Chem. Phys., 59 (1999) 254–261.
  40. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu, S-codoped TiO2 nanoparticles, Appl. Surf. Sci., 256 (2010) 1837–1844.
  41. T.E. Agustina, H.M. Ang, V.K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, J. Photochem. Photobiol., C, 6 (2005) 264–273.
  42. T.E. Agustina, H.M. Ang, V.K. Pareek, Treatment of winery wastewater using a photocatalytic/photolytic reactor, Chem. Eng. J., 135 (2008) 151–156.
  43. M. Nasirian, M. Mehrvar, Photocatalytic degradation of aqueous Methyl Orange using nitrogen doped TiO2 photocatalyst prepared by novel method of UV assisted thermal synthesis, J. Environ. Sci., 66 (2018) 81–93.
  44. B. Mazinani, A.K. Masrom, A. Beitollahi, R. Luque, Photocatalytic activity, surface area and phase modification of mesoporous SiO2–TiO2 prepared by a one-step hydrothermal procedure, Ceram. Int., 40 (2014) 11525–11532.
  45. Q.Z. Yan, X.T. Su, Z.Y. Huang, C.C. Ge, Sol–gel auto-igniting synthesis and structural property of cerium-doped titanium dioxide nanosized powders, J. Eur. Ceram. Soc., 26 (2006) 915–921.
  46. F. Amano, K. Nogami, M. Tanaka, B. Ohtani, Correlation between surface area and photocatalytic activity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchical structure, Langmuir, 26 (2010) 7174–7180.
  47. X. Chen, D. Liu, Z. Wu, G. Cravotto, Z. Wu, B.-C. Ye, Microwave-assisted rapid synthesis of Ag-β-cyclodextrin/TiO2/AC with exposed {001} facets for highly efficient naphthalene degradation under visible light, Catal. Commun., 104 (2018) 96–100.
  48. L. Dandan, L. Yiming, W. Zhansheng, T. Fei, Y. Bang-Ce, C. Xiaoqing, Enhancement of photodegradation of Ce, N, and P tri-doped TiO2/AC by microwave radiation with visible light response for naphthalene, J. Taiwan Inst. Chem. Eng., 68 (2016) 506–513.
  49. F. Tian, Z. Wu, Y. Tong, Z. Wu, G. Cravotto, Microwaveassisted synthesis of carbon-based (N, Fe)-codoped TiO2 for the photocatalytic degradation of formaldehyde, Nanoscale Res. Lett., 10 (2015) 360–371.
  50. H. Liu, X. Dong, L. Nan, H. Ma, X. Chen, Z. Zhu, A novel fabrication of silver-modified TiO2 colloidal-assembled microstructures and enhanced visible photocatalytic activities, Mater. Lett., 159 (2015) 142–145.
  51. D.V. Wellia, Q.C. Xu, M.A. Sk, K.H. Lim, T.M. Lim, T.T.Y. Tan, Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol-gel method, Appl. Catal., A, 401 (2011) 98–105.
  52. A. Banisharif, A.A. Khodadadi, Y. Mortazavi, A. Anaraki Firooz, J. Beheshtian, S. Agah, S. Menbari, Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: experimental and computational studies, Appl. Catal., B, 165 (2015) 209–221.
  53. J. Yang, L. Li, Z. Zhang, Q. Li, H. Wang, A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2, J. Photochem. Photobiol., A, 137 (2000) 197–202.